

НИУ «ТАШКЕНТСКИЙ ИНСТИТУТ ИНЖЕНЕРОВ ИРРИГАЦИИ И МЕХАНИЗАЦИИ СЕЛЬСКОГО ХОЗЯЙСТВА»

предмет:

ИРРИГАЦИЯ И МЕЛИОРАЦИЯ

TEMA

Способ орошения субирригация

Профессор Бегматов Илхом Абдураимович

Кафедра «Ирригация и мелиорация»

Список основной литературы

- 1. Шукурлаев Х.И, Бараев А.А., Маматалиев А.Б. Сельскохозяйственные гидротехнические мелиорации. «Мехнат», Тошкент. 2007. 300 стр.
- 2. Костяков А.Н.Основы мелиорация, М.: Сельхозгиз, 1960 г.-604 стр.
- 3. Марков Е.С. Сельскохозяйственные гидротехнические мелиорации, М.: Колос, 1981 г. 376 стр.

Список дополнительной литературы

- 1. Ерхов Н.С., Ильин Н.И., Мисенев В.С. Мелиорация земель, М.: Агропромиздат, 1991. 319 стр.
- 2. Ирригация Узбекистана. I-IV томы.
- 3. http://tiiame.uz/uz/page/ilmiy-jurnallar (Ирригация ва мелиорация журнали).
- 4. http://qxjurnal.uz/load/jurnal_2017/agro_ilm_2017 (Агро илм журнали).
- 5. https://elibrary.ru/title_about.asp?id=54940 (Журнал Вопросы мелиорация)

Контрольные вопросы по пройденной теме

- 1. Какие разновидности внутрипочвенного орошения вы знаете.
- 2. Перечислите элементы техники внутрипочвенного орошения.
- 3. Какие преимущества внутрипочвенного орошения.
- 4. Что входит в систему внутрипочвенного орошения.
- 5. Какие недостатки внутрипочвенного орошения перечислите их.
- 6. Как устраиваются увлажнительные трубопроводы.

Технологическая карта лекционного занятия на тему: «Способ орошения субирригация»

Этапы	Деятельность	
деятельности	Педагог	Студенты
	1.1. Знакомится с группой и делает перекличку	
I. Вводная часть	1.2. Дает список литературы, необходимый для усвоения	Сихинотопи
(10 минут).	лекционных занятий и краткую характеристику каждого источника.	Слушатели переписывают.
, ,	1.3. Знакомит студентов с темой занятия, его целью и ожидаемыми результатами.	•
	1.4. Знакомит студентов с правилами конспектирования лекционных занятий.	
	1.5. Дает вопросы для актуализации знаний студентов	
	2.1. Знакомит с темой и планом лекции, с основными понятиями.	Слушают,
II. Основная	2.2. Для освещения темы занятий использует слайды в Power point	Ведут запись.
часть	и доводит основные теоретические знания.	
(55 минут).	2.3. Задаёт вопросы для привлечения; по каждой части темы делает	Отвечают на
	выводы; обрашает внимание на основные понятия.	заданые вопросы.
	3.1. Обобщает тему, делает общие выводы, подводит итоги,	Внимательно
III. Итоговая	отвечает на заданные вопросы.	слушают. Задают
часть	3.2. Объявляет студентам контрольные вопросы по пройденой	вопросы.
(15 минут).	теме.	Отвечают на
	3.3. Дает задачи для самостоятельной работы: найти новые	заданые вопросы.
	сведения по пройденой теме, и самостоятельно прочитать.	Записывают
		задания.

ПЛАН ЛЕКЦИИ

- 1. Способ орошения субирригация.
- 2. Принцип работы контролируемого дренажа.
- 3. Блок управления контролируемого дренажа.
- 4. Преимущество контролируемого дренажа.
- 5. Недостатки контролируемого дренажа.

Способ орошения субирригацией

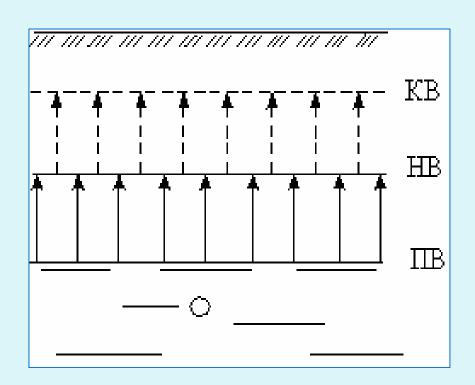
Подземное орошение (субирригация) - это способ увлажнения пахотного слоя почвы за счёт капиллярного подпитывания путём подъёма и поддержания необходимого уровня грунтовых вод.

Субирригация Способ искусственного подъёма уровня грунтовых вод: шлюзование сбросных, дренажных оросительных каналов; подача оросительной воды ПО сильнофильтрующим каналам, а также по глубине 0,4-0,6проложенным на трубчатым увлажнителям; регулирование естественного оттока грунтовых вод; подпитывание артезианскими водами; путём прорезания водонепроницаемого слоя.

Преимущества субирригации:

- -экономия речной воды;
- -имеется возможность использования грунтовые воды в качестве дополнительного источника;
- -не уплотняется почва борозд, отсутствие ирригационной эрозии;
- -улучшение воздушного и питательного режимов почвы;
- -не загрязняется окружающая среда;

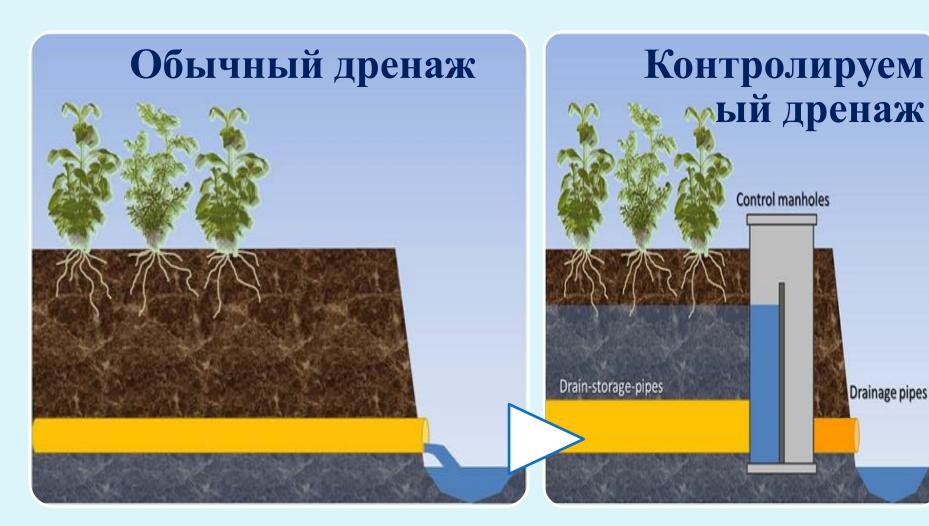
Недостатки:


- --ограниченное использование на почвах подверженных к засолению;
- --невозможность применения на территориях с высокой минерализацией ГВ;
- --нарушение рабочего состояния дренажа за счет его перегораживания;
- --сложность процесса орошения.

Способ орошения субирригация

Схема управления уровнем грунтовых вод

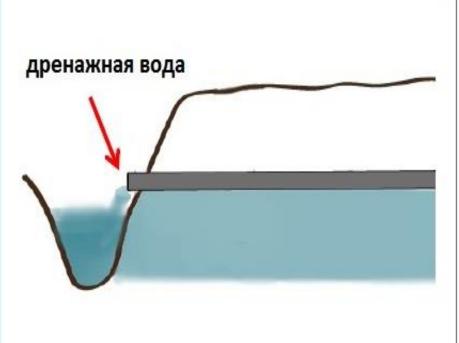
Распределение почвенной влаги при субирригации:

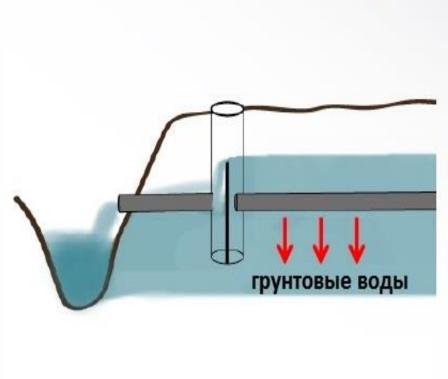

Виды оросительных систем при субирригации:

КВ-капиллярная влагоёмкость; НВ-наименьшая влагоёмкость; ПВ-полная влагоёмкость. 1- открытый ороситель; 2,3,4 - горизонты грунтовых вод; 5-увлажнительный трубопровод.

- Контролируемый дренаж, также известный как управление дренажными водами, это практика управления водой для повышения глубины выхода дренажа, удерживания воды в поле в периоды, когда дренаж не требуется.
- В отличие от обычных дренажных систем, которые удаляют избыточную воду до глубины слива конструкции, управляемый дренаж сохраняет воду за счет увеличения времени удерживания воды в профиле почвы.
- Таким образом, удаление избыточной почвенной воды может быть отложено и/или уменьшено, создавая возможности для обеспечения объемов дренажа.

Контролируемые отличаются дренажные системы обычного OT. возможностью варьировать дренажа интенсивностью дренажа в течение контролируя сезона, высоту стояка в сливном отверстии.

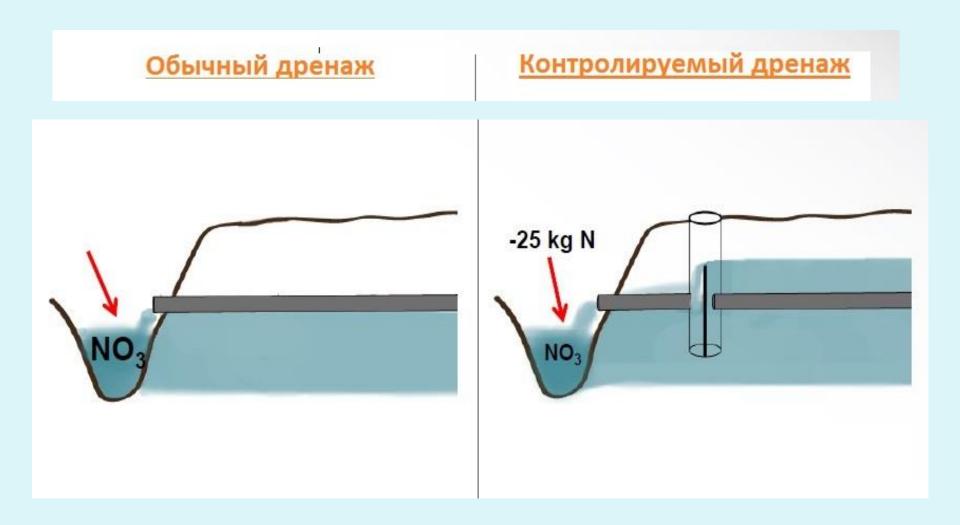



Drainage pipes

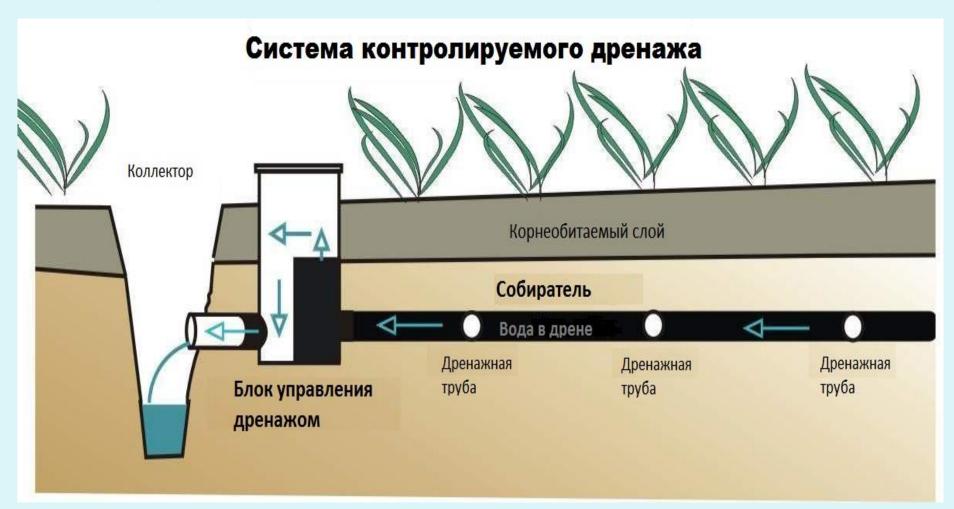
Контролируемый дренаж уменьшает объем дренажной воды, оставляя в поле в среднем от 20 до 30%

Обычный дренаж

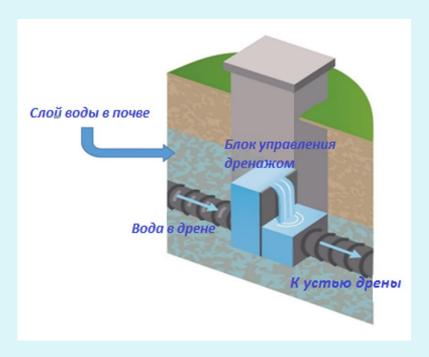
Контролируемый дренаж

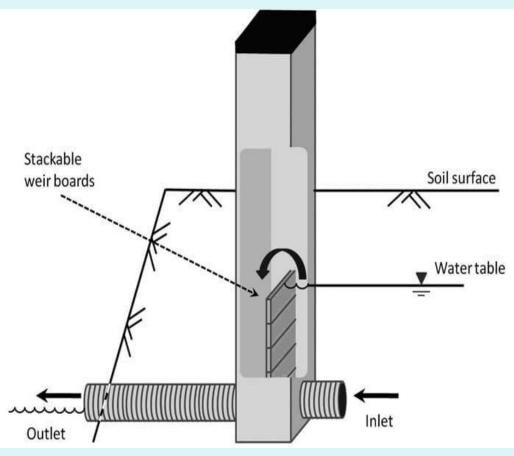


- Отток сильно варьируется в зависимости от типа почвы, количества осадков, типа дренажной системы и интенсивности управления.
- В сухие годы контролируемый дренаж может полностью исключить отток. Во влажные годы контроль может незначительно повлиять на общий отток.

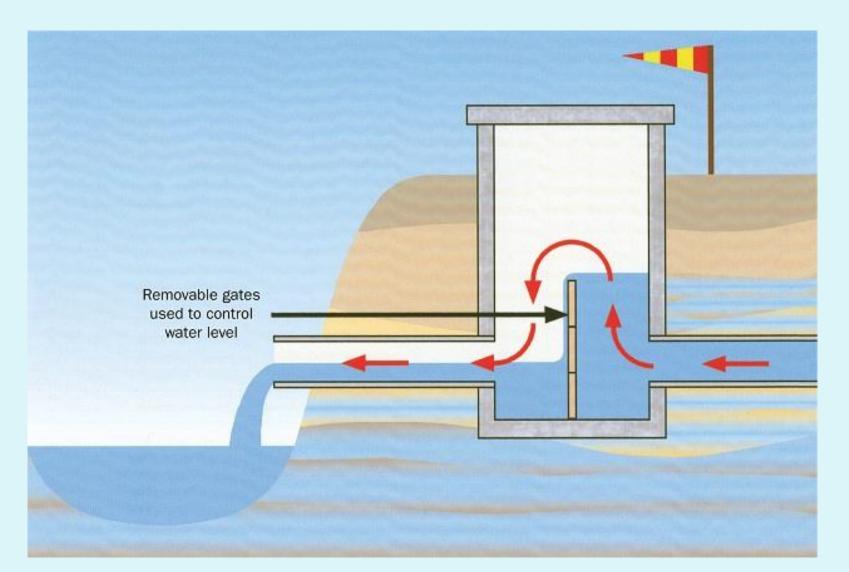

Контролируемый дренаж обеспечивает более высокий уровень грунтовых вод, который способствует денитрификации в пределах профиля почвы.

Концентрации нитратов и азота были на 10-20% ниже в оттоке из контролируемых систем по сравнению с неконтролируемыми системами.


Система контролируемого дренажа: дрены, контрольные скважины, дренажные трубы и блок управления.

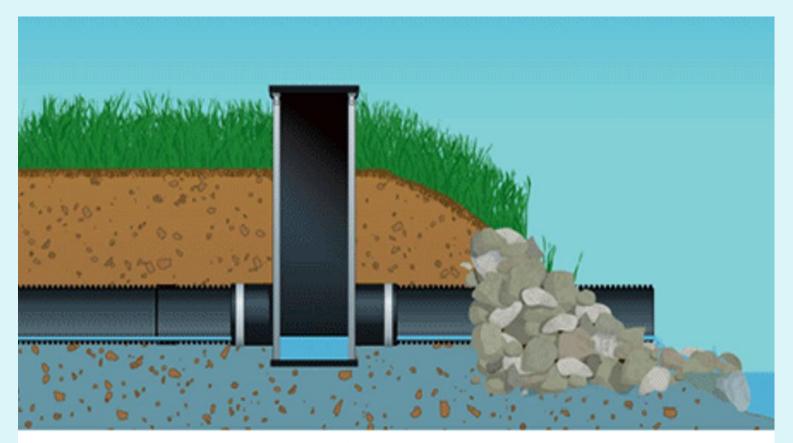


Блок управления водой обычно расположен в контрольной скважине, установленной в коллекторной канаве.



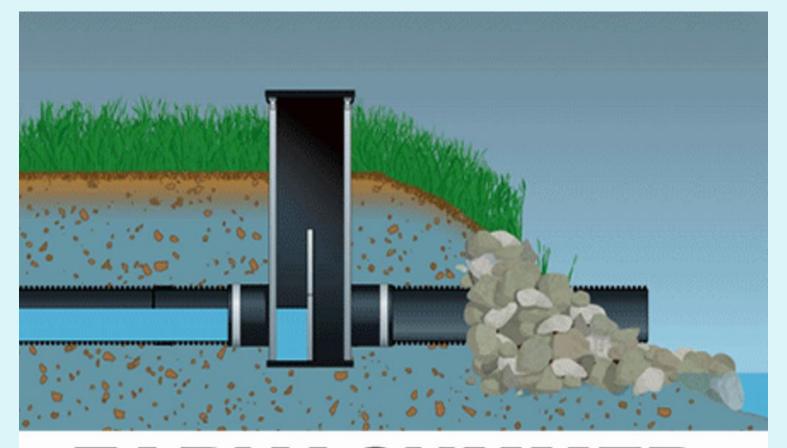
Тиничный блок управления дренажа состоит из стояка с подвижными затворами, или стоп-логами, для подъема или опускания высоты выхода и при этом высоты воды.

Блок управления дренажа



После сбора урожая и зимой контрольные затворы устанавливаются на высоком уровне, чтобы удерживать питательные вещества и избыток воды в почве.

FALL Stop logs replaced after harvest

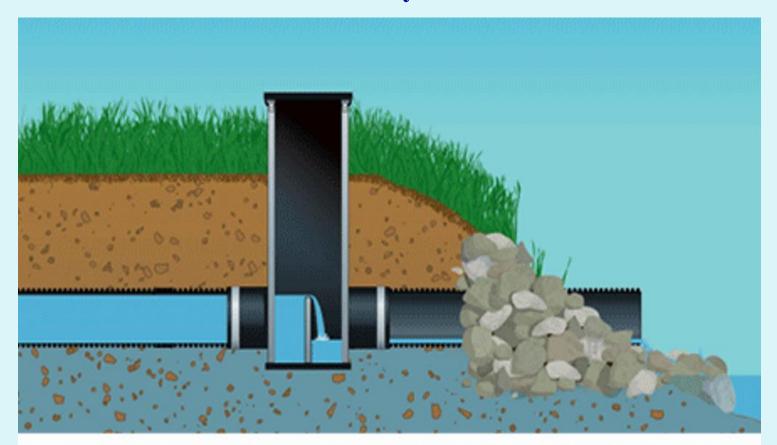

Весной контрольные затворы опущены для слива избыточной воды и подготовки к посадке.

SPRING No stop logs for free drainage

В начале лета затворы могут быть подняты до промежуточного

уровня, чтобы сохранить воду для роста посевов.

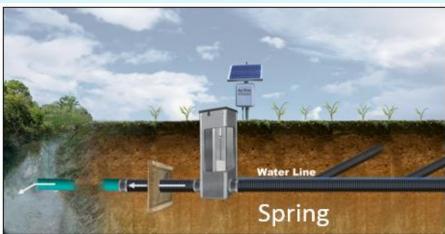
EARLY SUMMER

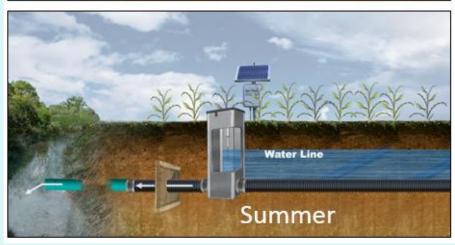

Stop logs placed at desired water table height

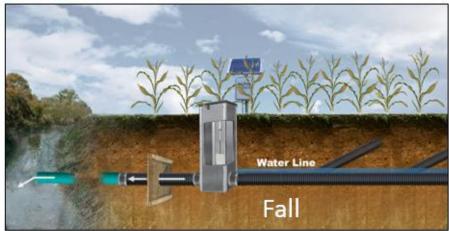
В середине лета затворы могут быть подняты до ожидаемого количества осадков или питательных веществ, чтобы сдержать первоначальный уровень дренажной воды.

SUMMER Stop logs hold water at high levels

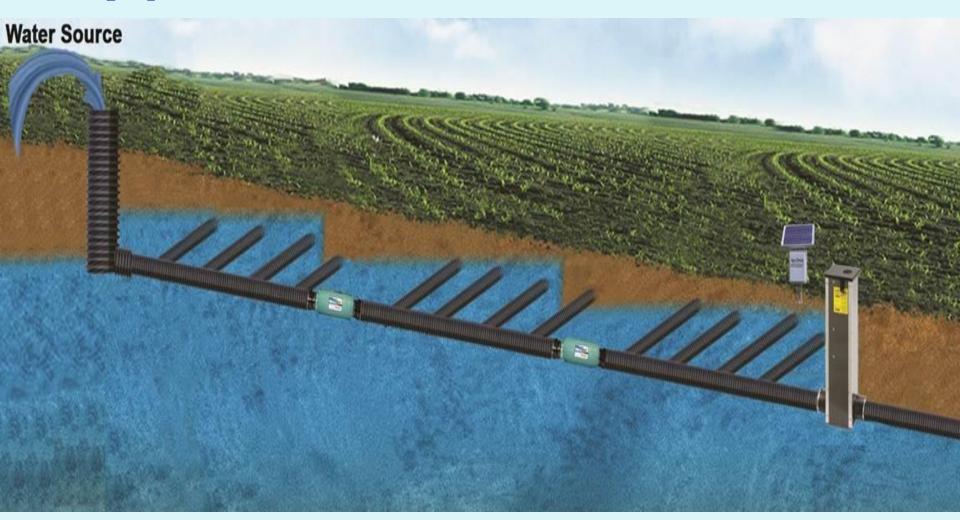
в конце лета затворы могут быть опять опущены, если позволяют условия

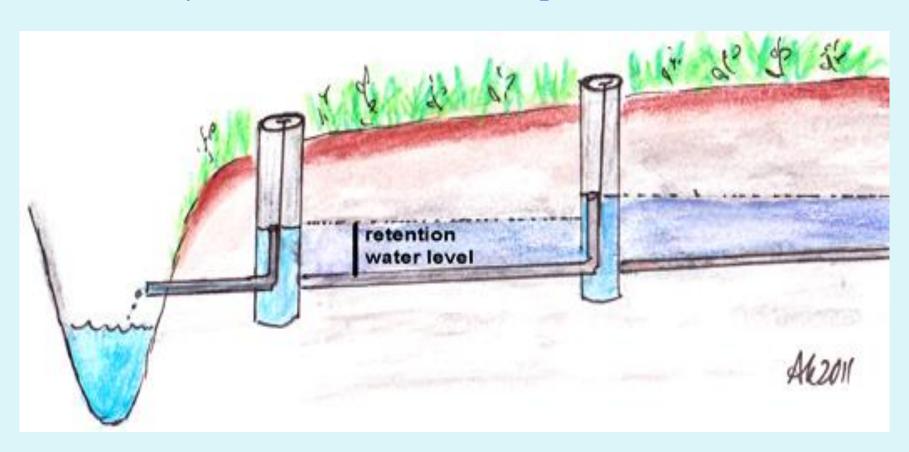


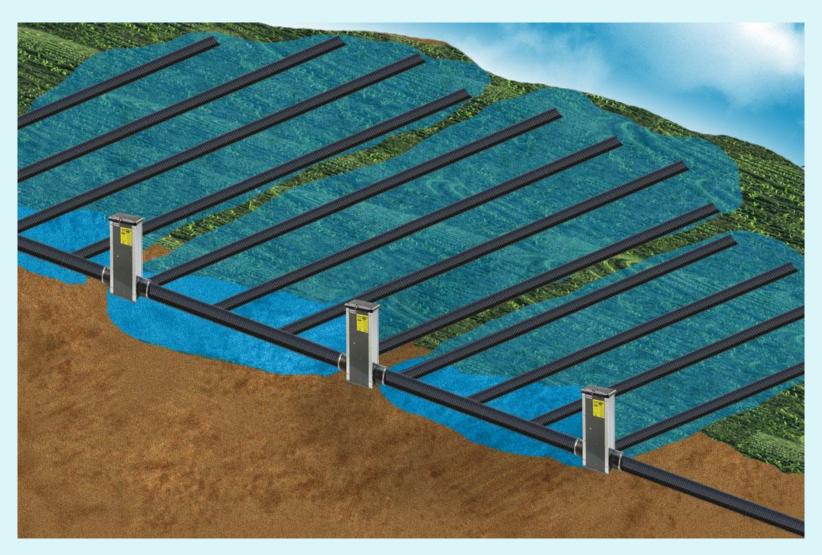

LATE SUMMER


Stop logs removed to lower water table

Регулирование затворов в зависимости от времени года.


Контролируемая дренажная система с ручным управлением.


Контролируемая дренажная система с автоматическим управлением.


Применение контролируемых дренажных систем ограничено фактором топографии. Контролируемые дренажные системы лучше всего подходят для полей с очень плоской топографией (<1,0% склона).

Дополнительный наклон увеличивает затраты на строительство и техническое обслуживание, поскольку необходимо установить больше контрольных колодцев.

На плоском поле требуется одна контрольная скважина примерно на 1,5 гектара.

Современные контролируемые дренажные системы прошли долгий путь, и технология их применения стала более удобной.

- Система состоит из современных композитных или алюминиевых панелей, которые не набухают.
- Новые «умные» дренажные системы в стадии разработки направляют уведомления фермерам о том, когда они должны поднимать и опускать барьеры на основе прогноза погоды, влажности почвы и стадии роста урожая; это обеспечивает огромную экономию времени.
- Полностью автоматизированные системы теперь поднимаются и опускаются сами по себе.
- Существуют возможности для рециркуляции дренажных вод для повторного орошения полей выгоды для окружающей среды и экономии затрат фермеров.

Затраты на установку контролируемой дренажной системы.

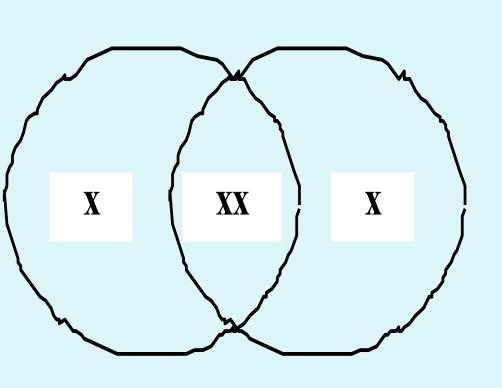
• Затраты зависят от конкретного поля, но обычно варьируются от 600 до 3000 долларов США (120 долларов США с гектара).

Затраты на установку контролируемой дренажной системы.

• Автоматизированные системы будут стоить дороже; для ручных систем потребуется больше времени.

Затраты на установку контролируемой дренажной системы.

- Затраты могут быть ниже, если уже существующие дренажные системы преобразуются для обеспечения контролируемого дренажа.
- Ввиду наличия существующей структуры необходимы более низкие инвестиции в размере от 50 до 100 долларов США за гектар.


Преимущества контролируемого дренажа.

- Помогает контролировать уровень грунтовых вод и влиять на количество воды, хранящейся или высвобождаемой.
- Может снизить содержание нитратов в дренажных водах на 25-40%. Потеря химических веществ (таких как нитраты) снижается по сравнению с обычными дренажными системами, поскольку вода хранится в почве в течение длительного времени. Поэтому подземные воды и другие принимающие водоемы лучше защищены от загрязнения химическими веществами.
- Может уменьшить кратковременный стресс, связанный с водой (например, отсутствие осадков) и, следовательно, увеличить урожайность.

Недостатки контролируемого дренажа.

- Строительство требует экспертных навыков; необходимы специальные навыки для эксплуатации и обслуживания
- Используется только для полей уровня с наклоном менее 1%.
- Последующие осадки могут привести к чрезмерной влажности
- Не может использоваться для внесения удобрений, поскольку происходит загрязнение грунтовых вод
- Требуется однородный профиль почвы
- Не соответствует долгосрочным стрессам, связанным с водой. Несмотря на то, что контролируемые дренажные системы могут уменьшить кратковременный дефицит воды, они не могут преодолевать более длительные периоды без осадков и поэтому не подходят для чрезвычайно сухих районов.
- Работа такой системы затруднена, потому что необходимы хорошие знания о наилучших сроках выпуска или хранения воды.

Составьте диаграмму Венна для двух различных способов орошения

В каждый круг впишите различия между выбранными вами способами орошения.

В месте пересечения кругов запишите то, что на ваш взгляд является общим для обоих способов орошений.

Контрольные вопросы по теме

- 1. Что представляет собой способ орошения субирригация?
- 2. Преимущества способа орошения субирригация.
- 3. Недостатки способа орошения субирригация.
- 4. Принцип работы контролируемого дренажа?
- 5. Конструкция контролируемого дренажа?
- 6. Задачи контролируемого дренажа?
- 7. Автоматическое управления контролируемым дренажом?

Спасибо за внимание!