

НИУ «ТАШКЕНТСКИЙ ИНСТИТУТ ИНЖЕНЕРОВ ИРРИГАЦИИ И МЕХАНИЗАЦИИ СЕЛЬСКОГО XO3ЯЙСТВА»

ПРЕДМЕТ:

ИРРИГАЦИЯ И МЕЛИОРАЦИЯ

TEMA

Режим орошения при СКО

Профессор Бегматов Илхом Абдураимович

Кафедра «Ирригация и мелиорация»

Список основной литературы

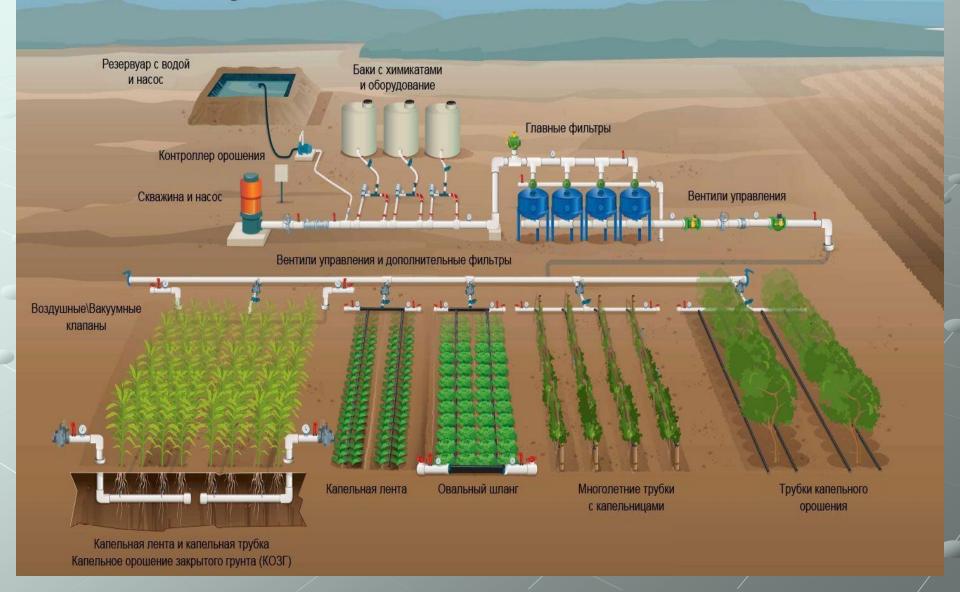
- 1. Шукурлаев Х.И, Бараев А.А., Маматалиев А.Б. Сельскохозяйственные гидротехнические мелиорации. «Мехнат», Тошкент. 2007. 300 стр.
- 2. Костяков А.Н.Основы мелиорация, М.: Сельхозгиз, 1960 г.-604 стр.
- 3. Марков Е.С. Сельскохозяйственные гидротехнические мелиорации, М.: Колос, 1981 г. 376 стр.

Список дополнительной литературы

- 1. Ерхов Н.С., Ильин Н.И., Мисенев В.С. Мелиорация земель, М.: Агропромиздат, 1991. 319 стр.
- 2. Ирригация Узбекистана. I-IV томы.
- 3. http://tiiame.uz/uz/page/ilmiy-jurnallar (Ирригация ва мелиорация журнали).
- 4. http://qxjurnal.uz/load/jurnal_2017/agro_ilm_2017 (Агро илм журнали).
- 5. https://elibrary.ru/title_about.asp?id=54940 (Журнал Вопросы мелиорация)

Контрольные вопросы по пройденной теме

- Виды капельных лент.
- Что вы понимаете под компенсируемыми и некомпенсируемыми капельницами?
- Какую задачу выполняет фитинги в СКО?
- Какие основные параметры капельных лент?
- Какой диаметр и толшина стенок применяется в капельных лентах?
- Какие виды капельниц существуют?
- Что входит в состав элементов СКО?
- Расход и растояния между капельницами, а также рабочее давление.
- Что вы понимаете под интенсивностью капельниц, и как она определяется?
- Достоинства и недостатки системы капельного орошения.


Технологическая карта лекционного занятия на тему: «Режим орошения при СКО»

Этапы		Деятельность	
деяте	льности	Педагог	Студенты
		1.1. Знакомится с группой и делает перекличку	
Ч	водная асть	1.2. Дает список литературы, необходимый для усвоения лекционных занятий и краткую характеристику каждого	Слушатели
(10 N)	минут).	источника.	переписывают.
		1.3. Знакомит студентов с темой занятия, его целью и ожидаемыми результатами.	
		1.4. Знакомит студентов с правилами конспектирования	9
		лекционных занятий.	
		1.5. Дает вопросы для актуализации знаний студентов	
		2.1. Знакомит с темой и планом лекции, с основными понятиями.	Слушают,
II. O	сновная	2.2. Для освещения темы занятий использует слайды в Power point	Ведут запись.
Ч	асть	и доводит основные теоретические знания.	
(55 N	минут).	2.3. Задаёт вопросы для привлечения; по каждой части темы делает	Отвечают на
		выводы; обрашает внимание на основные понятия.	заданые вопросы.
Ш. И	Ітоговая	3.1. Обобщает тему, делает общие выводы, подводит итоги, отвечает на заданные вопросы.	слушают. Задают
	асть	3.2. Объявляет студентам контрольные вопросы по пройденой	вопросы.
(15 N)	минут).	теме.	Отвечают на
		3.3. Дает задачи для самостоятельной работы: найти новые	заданые вопросы.
		сведения по пройденой теме, и самостоятельно прочитать.	Записывают задания.
			/

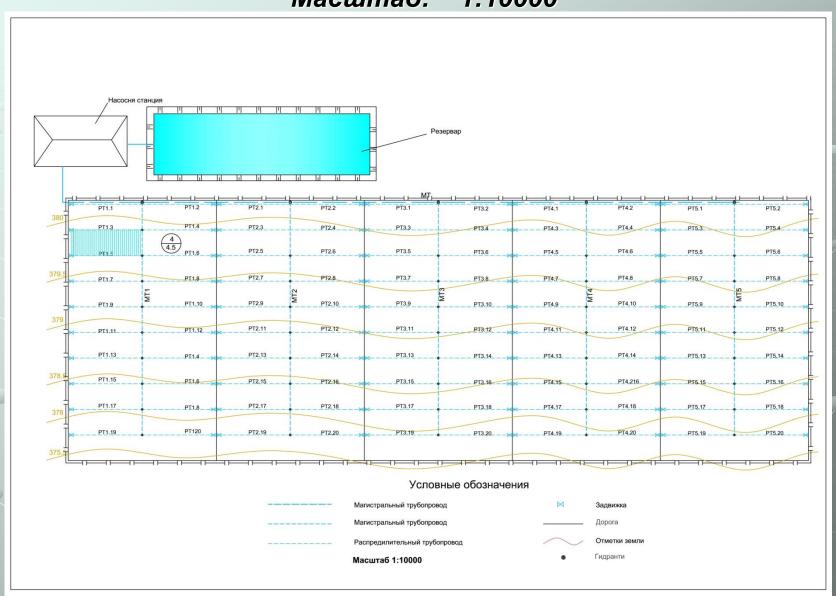
ПЛАН ЛЕКЦИИ

1. Режим орошения при СКО.

Принцип устройства системы капельного орошения

Задания на проектирование

- •Рассматриваемое фермерское хозяйство «Огалик олтин боглари» расположена в Самаркандском районе Самаркандской области.
- •Общая площадь фермерского хозяйства «Огалик олтин боглари» составляет 495 гектаров.


$$\Omega_{\text{вал}} = \Omega_{6p} = 495$$
 га

$$K3M = 0,92$$

$$\omega_{\text{нет}} = \Omega_{6p} \cdot \text{K3И} = 495 \cdot 0,92 = 455 га$$

Генеральный план фермерского хозяйства «Огалик олтин боглари»

Масштаб: 1:10000

Определение расчётных расходов

- Земли нового орошения составляют общую площадь «нетто»
 - 123,7 га. Из них отведено под сады 58,14 га и виноградники 65,56 га. Принят капельный способ орошения.
- При капельном способе орошения для определения расчетных расходов воды необходимы следующие исходные данные:
- 1. Схема посадки:
- a) 6 x 5 для сада;
- б) 3,5 x 3,0 для виноградника.
- 2. Тип и расход капельниц:
- a) «Молдавия 4AM», расход 4 л/ч;
- б) «Варио-Дрип», расход 2 л/ч.
- 3. Количество капельниц по 2 капельницы под каждое насаждение.

Определение расчётного расхода для полива 1 гектара сада

• Вычисляем количество саженцев на 1 гектаре.

$$N_{caж.} = \frac{10000}{6.5} = 334$$
 саженцев

Определяем расчётный расход воды для полива 1 гектара сада.

$$Q = \frac{N_{case.} \cdot q \cdot n}{3600}, \pi/c$$

Где; Q - расчетный расход, л/с;

N_{саж.} - количество саженцев;

q - расход капельницы, л/час;

n - количество капельниц;

3600 - переводной коэффициент (в л/сек).

$$Q_{cao.} = \frac{334 \cdot 4 \cdot 2}{3600} = 0.75 \approx 0.8 \ \pi/c$$

Определение расхода воды для полива 1 гектара виноградника

• Вычисляем количество саженцев на 1 гектаре.

$$N_{case.} = \frac{10000}{3,5 \cdot 3,0} = 953$$
 саженцев

Определяем расчётный расход воды на 1 гектар.

$$Q_{\text{вин}} = \frac{953 \cdot 2 \cdot 2}{3600} = 1,06 \ \pi/c$$

Минимальный расход поливного трубопровода определяется по зависимости.

$$q_{n.m.} = \frac{N_{\kappa an.} \cdot q}{3600} = \frac{60 \cdot 4}{3600} = 0.03 \ \pi/c$$

Где: $N_{\kappa a n}$ -количество капельниц на поливном трубопроводе.

$$N_{\kappa an.} = (L_{n.u.} : B) \cdot n$$

 $L_{n,m}$ - длина поливного трубопровода, м;

В - расстояние между саженцами, м;

n - количество капельниц между саженцами, шт.

Пример для сада:

$$L_{n.m.}$$
= 150 м; B = 5 м; n = 2 шт.

$$N_{\kappa an.} = (150:5) \cdot 2 = 60 \ \mu m$$

Пример для виноградникасада:

$$L_{n,\tau} = 120$$
 м; $B = 3$ м; $n = 2$ шт.

$$N_{\kappa an.} = (120:3) \cdot 2 = 80 \ um$$

Отсюда:

$$q_{n.m.} = \frac{80 \cdot 2}{3600} = 0.04 \ \pi / c$$

• Расход участкового трубопровода зависит от количества подвешенных поливных трубопроводов.

$$Q_{y.m.} = q_{n.m.} \cdot N_{n.m.} + 1$$

 $N_{n.r.}$ - число поливных трубопроводов на всей рабочей длине.

 $N_{n.m.} = \frac{L_{y.m.}}{L}$

Где: $L_{y.m.}$ - рабочая длина участкового трубопровода, м; L - расстояние между рядами саженцев или деревьев, м.

Пример для виноградника на распределителе УТ-8:

$$L_{y.m.} = 375 \text{ m};$$
 $L_{.} = 3.5 \text{ m}.$

$$N_{n.m.} = \frac{375}{3,5} = 107$$
 рядов

Проверочный расчет:

Площадь, подвешенная к УТ-8 равна $\omega_{_{\!\mathit{HM}}} = 3,99 \ {\it ca}$

Расчётный расход воды на 1 гектар.

$$Q_{n.m.} = Q_{euh}$$
 $\omega_{hm} = 1.06$ $3.99 = 4.23 \pi/c$

Расчет режима орошения сельскохозяйственных культур

Ограниченный земельный выдел, почвенные и гидрогеологические условия которого определяют одинаковый режим орошения, называется гидромодульным районом. Проектом принят II гидромодульный район, исходя из условий, что уровень грунтовых вод в проектных условиях находится ниже 3-х метров от поверхности земли, а почвы по механическому составу относятся к суглинистым.

При капельным способе возможно орошение каждого растения в отдельности, так называемое, очаговое орошение, а также каждого ряда растений, то есть полосовое орошение.

Исходные данные:

- Климатические данные объекта по данным метеостанции;
- Почвы типичные сероземы;
- Глубина залегания грунтовых вод ниже 3 м;
- Объемный вес почвы =1,36-1,53 г/см³;
- Полная влагоёмкость почвы ПВ = 47,2% или 0,472;
- Предельно-полевая влагоёмкость почвы ППВ = 36,8% или 0,368;
- Предполивная влажность (0,85% от ППВ) Д = 31,28% или 0,3128;
- Скорость впитывания в конце первого часа 89 мм/час -0,089 м/ч; скорость впитывания в конце четвертого часа 50 мм/час - 0,05 м/ч;
- Насаждение культуры (схема посадки)
 Виноградники 3,5 х 3,0 м;
 Сады 6 х 5 м;

Расчёт виноградников

Принимаем параметры для виноградника b = 1,2 м; h = 0,9 м; Z = 1,25 м.

1. Определяем величину элементарной поливной нормы при полосовом увлажнении по формуле:

$$\mu_n = 0.8 \cdot \gamma \cdot h \cdot b \cdot z \cdot (\beta_{\Pi\Pi B} - \beta_i) \cdot K_1 \cdot K_2$$

$$\mu_n = 0.8 \cdot 1.48 \cdot 0.9 \cdot 1.2 \cdot 1.25 \cdot (0.368 - 0.3128) \cdot 0.5 \cdot 1 = 0.044 \text{ m}^3 / \text{cym}$$

2. Определяем минимально допустимую продолжительность вылива элементарной поливной нормы, зависящую от впитывающей способности почвы по формуле:

$$t = \frac{2 \cdot P \cdot \alpha}{V_1 + V_2} = \frac{2 \cdot 0,09 \cdot 1,25}{0,089 + 0,05} = 1,62 \text{ uac}$$

 где: Р - слой воды на насыщение вертикальной почвенной колонки расчетной глубины непосредственно под капельным водовыпуском, м

$$P = \gamma \cdot \varphi \cdot h \cdot (\beta_{IIIIB} - \beta_i) = 1,48 \cdot 1,1 \cdot 1,0 \cdot (0,368 - 0,3128) = 0,09 \text{ M}$$

где ϕ - коэффициент, учитывающий расход воды за время перераспределения влаги в контуре увлажнения, для суглинистых почв $\phi = 1,1$;

- α коэффициент, учитывающий сконцентрированный характер подачи воды, для суглинка $\alpha = 1,25$.
- V₁ скорость впитывания в конце первого часа, м/ч;
- V₂ скорость впитывания в конце четвертого часа, м/ч.

- 3. Количество капельниц подбираем из расчета среднесуточной водоподачи на каждый куст виноградника. Земли, используемые под виноградники, имеют легкий механический состав, для более полного их увлажнения принимаем две капельницы системы «Варио-Дрип» с расходом 2 л/ч каждая.
- 4. Рабочая продолжительность полива определяется по формуле:

$$t_p = \frac{1000 \cdot \mu_n}{n \cdot q} = \frac{1000 \cdot 0,044}{2 \cdot 2} = 11 \, \mu a \cos \theta$$

Где: n - количество капельниц под одно дерево; q - расход капельницы, $\pi/4$.

5. В связи с тем, что при капельном орошении увлажнение производится не на всей площади, а на ее части, необходимо найти коэффициент увлажненности по формуле:

$$f = \frac{b}{B} = \frac{1,2}{3,5} = 0,34$$

где b - расчетная ширина горизонтальной проекции увлажнения, принимается равным 1,2;

В - ширина междурядий; В = 3,5 м.

6. Поливная норма рассчитывается по формуле:

$$M_n = \frac{\mu \cdot 10000 \cdot K}{B \cdot l}, m^3 / \epsilon a$$

Где: К = 1,1 - коэффициент, учитывающий потери на испарение

$$M_n = \frac{0.044 \cdot 10000 \cdot 1.1}{3.5 \cdot 3} = 46 \ m^3 / ca$$

7. Для расчета режима орошения определяется испаряемость по месяцам вегетационного периода по формуле Н.Иванова:

$$E_0 = 0.0018 \cdot 0.8 \cdot (25 + t_1)^2 \cdot (100 - a_1), \text{ MM}$$

Где: Е₀ - среднемесячная испаряемость, мм;

t₁ - среднемесячная температура, °C;

а₁ - среднемесячная относительная влажность воздуха, %;

$$t_1 = t + 0.1 \cdot \left(a - a_1\right)$$

$$a_1 = a \cdot K_0$$

- Где: К₀ коэффициент влажности воздуха;
- t и а температура и относительная влажность воздуха по показаниям метеостанции;
- t₁ и а₁ то же с учетом периода освоения территории.
- 8. Принят I этап начало освоения :

$$a_I^V = 39 \cdot 1,1 = 42,9$$
 $t_I^V = 19,8 + 0,1 \cdot (50 - 42,9) = 20,51$

$$a_I^{VI} = 39 \cdot 0.9 = 35.1$$
 $t_I^{VI} = 24.8 + 0.1 \cdot (34 - 35.1) = 24.69$

$$a_I^{VII} = 39 \cdot 0.8 = 31.2$$
 $t_I^{VII} = 27.5 + 0.1 \cdot (31 - 31.2) = 27.48$

$$a_I^{VIII} = 39 \cdot 0.9 = 35.1$$
 $t_I^{VIII} = 25.8 + 0.1 \cdot (32 - 35.1) = 25.49$

$$a_I^{IX} = 39 \cdot 1,0 = 39,0$$
 $t_I^{IX} = 20,4 + 0,1 \cdot (34 - 39) = 19,9$

8. Определяем испаряемость по месяцам:

$$E_0^V = 0,0018 \cdot 0,8 \cdot (25 + 20,5)^2 \cdot (100 - 42,9) = 170,3 \text{ MM}$$

$$E_0^{VI} = 0,0018 \cdot 0,8 \cdot (25 + 24,69)^2 \cdot (100 - 35,1) = 230,75 \text{ мм}$$

$$E_0^{VII} = 0,0018 \cdot 0,8 \cdot (25 + 27,48)^2 \cdot (100 - 31,2) = 272,863 \text{ мм}$$

$$E_0^{VIII} = 0,0018 \cdot 0,8 \cdot (25 + 25,49)^2 \cdot (100 - 35,1) = 238,24 \text{ MM}$$

$$E_0^{IX} = 0,0018 \cdot 0,8 \cdot (25 + 19,9)^2 \cdot (100 - 39,0) = 177,09 \text{ мм}$$

9. Определяем водопотребление по месяцам вегетации для II-го гидромодульного района при поливе по бороздам по формуле:

$$E_{II} = \frac{E_0^{1,58}}{31,62}$$
, мм

$$E_{II}^{V} = \frac{170,3^{1,58}}{31,62} = \frac{3352,11}{31,62} = 106,0 \text{ MM}$$

$$E_{II}^{VI} = \frac{230,75^{1,58}}{31,62} = \frac{5417,05}{31,62} = 171,30 \text{ мм}$$

$$E_{II}^{VI} = \frac{272,86^{1,58}}{31,62} = \frac{7059,67}{31,62} = 223,30 \text{ мм}$$

$$E_{II}^{VIII} = \frac{238,24^{1,58}}{31,62} = \frac{5697,48}{31,62} = 180,20 \text{ MM}$$

$$E_{II}^{IX} = \frac{177,09^{1,58}}{31,62} = \frac{3565,71}{31,62} = 112,80 \text{ MM}$$

10. При определении водопотребления виноградника по месяцам при поливе по бороздам в расчетную формулу вводят дополнительный коэффициент, представляющий собой отношение водопотребления виноградника к водопотреблению хлопчатника.

$$E_{\sigma.c.}^{V} = 106,0 \cdot 0,99 = 104,94 \text{ MM}$$

$$E_{\sigma.c.}^{VI} = 171,3 \cdot 0,78 = 133,61 \text{ MM}$$

$$E_{\delta.c.}^{VII} = 223,3 \cdot 0,69 = 154,08 \text{ MM}$$

$$E_{\sigma.c.}^{VIII} = 180, 2 \cdot 0, 70 = 126, 14 \text{ MM}$$

$$E_{\sigma.c.}^{IX} = 112,8 \cdot 0,83 = 93,62 \text{ MM}$$

11. Определяем водопотребление виноградника в соответствии с календарными сроками вегетации:

$$E_{\delta.c.}^{V} = \frac{104,94 \cdot 21}{31} = 71,09 \text{ MM}$$

$$E_{\delta.c.}^{VI} = \frac{133,61 \cdot 30}{30} = 133,61 \text{ MM}$$

$$E_{\delta.c.}^{VII} = \frac{154,08 \cdot 31}{31} = 154,08 \text{ MM}$$

$$E_{\sigma.c.}^{VIII} = \frac{126,14 \cdot 31}{31} = 126,14 \text{ MM}$$

$$E_{\delta.c.}^{IX} = \frac{93,62 \cdot 7}{30} = 21,84 \text{ MM}$$

12. Определяем водопотребление виноградника в соответствии с календарными сроками вегетации за вычетом осадков.

$$E_{\delta.c.}^{V} = 71,09 - \frac{28 \cdot 21}{31} = 52,12 \text{ MM}$$

$$E_{\delta.c.}^{VI} = 133,61 - \frac{4 \cdot 30}{30} = 129,61 \text{ MM}$$

$$E_{\delta.c.}^{VII} = 154,08 - \frac{1 \cdot 31}{31} = 153,08 \text{ mm}$$

$$E_{\delta.c.}^{VIII} = 126,14 - \frac{1 \cdot 31}{31} = 125,14 \text{ MM}$$

$$E_{\delta.c.}^{IX} = 21,84 - \frac{4 \cdot 7}{30} = 20,90 \text{ мм}$$

13. Определяем водопотребление виноградника при f=0,34

$$E_K^V = 0.34 \cdot 52.12 = 17.72 \text{ MM} = 177.2 \text{ M}^3 / \epsilon a$$

$$E_K^{VI} = 0.34 \cdot 129,61 = 44,07 \text{ } MM = 440,7 \text{ } M^3 \text{ } / \text{ } \epsilon a$$

$$E_K^{VII} = 0.34 \cdot 153,08 = 52,05 \text{ MM} = 520,5 \text{ M}^3 / \epsilon a$$

$$E_K^{VIII} = 0.34 \cdot 125.14 = 42.55 \text{ MM} = 425.5 \text{ M}^3 / \epsilon a$$

$$E_K^{IX} = 0.34 \cdot 20.90 = 7.11 \text{ MM} = 71.1 \text{ M}^3 / \epsilon a$$

Суммарное водопотребление на вегетационный период составит $1635 \text{ м}^3/\text{гa} \approx 1700 \text{ гa}$.

14. Продолжительность межполивного периода определяется по формуле:

$$T = \frac{E_{\kappa}^{i}}{E_{\kappa.cym.}}$$

Определяем суточное водопотребление по месяцам:

$$E_{\kappa.cym.}^{V} = \frac{177,2}{21} = 8,44 \text{ m}^3 / 2a \cdot cym$$

$$E_{\kappa.cym.}^{VI} = \frac{440,7}{30} = 14,70 \text{ m}^3 / 2a \cdot cym$$

$$E_{\kappa.cym.}^{VII} = \frac{520,5}{31} = 16,80 \text{ m}^3 / 2a \cdot cym$$

$$E_{\kappa.cym.}^{VIII} = \frac{425,5}{31} = 13,70 \text{ m}^3 / 2a \cdot cym$$

$$E_{\kappa.cym.}^{IX} = \frac{71,1}{7} = 10,2 \text{ m}^3 / 2a \cdot cym$$

Определяем значение межполивного периода:

$$T^{V} = \frac{46}{8,44} = 5,45 \ cym$$
 $T^{VI} = \frac{46}{14,70} = 3,13 \ cym$

$$T^{VII} = \frac{46}{16,80} = 2,74 \ cym$$
 $T^{VIII} = \frac{46}{13,70} = 3,36 \ cym$

$$T^{IX} = \frac{46}{10,2} = 4,5 \ cym$$

Определяем количество поливов, которое необходимо провести за вегетационный период:

в мае -
$$\frac{21}{5,45} \approx 4$$
 полива;

в июне -
$$\frac{30}{3,13} \approx 10$$
 полива;

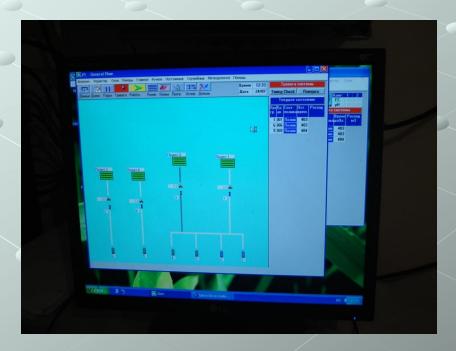
в июле -
$$\frac{31}{2,74} \approx 12$$
 полива;

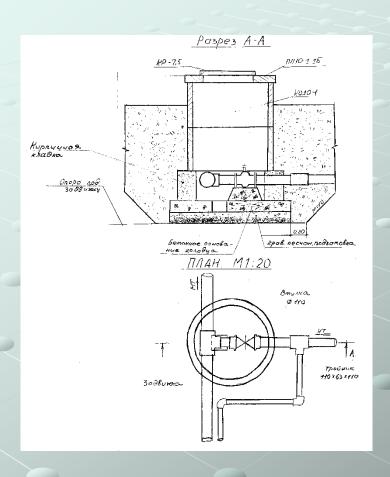
в августе -
$$\frac{31}{3.36} \approx 10$$
 полива;

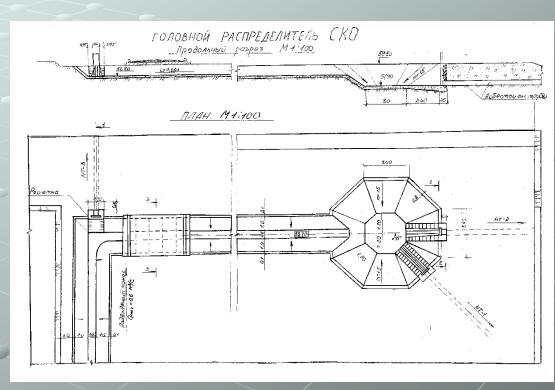
в сентябре -
$$\frac{7}{4,5} \approx 2$$
 полива;

ИТОГО: 38 поливов.

 $M = 38 \cdot 46 = 1750 \text{ м}^3/\text{га} \cdot 51,33 = 89830 \text{ м}^3$ в год за вегетацию.







Гидротехническиесооружения на СКО

Спасибо за внимание!