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Abstract. The areas of the foothill rivers are distinguished by large 
bottom slopes reaching 0.004, with increased kinetics of the flow of more 
than 0.15, and by gravel-pebble sediments of the river bed and flow. An 
analysis of the studies performed on the regulatory structures showed that 
the bulk of them was performed for the conditions of lowland rivers. In the 
article, a design of a combined dam with a through part of tetrahedrons is 
proposed. The experiments were conducted in a flume with a rigid bottom 
and with a variable slope of. The modeling was performed according to 
Froude in a self-similar area. Experimental studies revealed the presence of 
two flow spreading modes depending on the bottom slope: a "calm" mode 
at крД < ii  and a "critical" mode at крД > ii  These modes are mainly influenced 

by the degree of constraint and the Froude number. In the previous articles, 
a solution to the problem was provided for the case крД < ii  , which covers 
the foothill sections of rivers at a "calm" mode. At a further increase in the 
degree of flow constraint 3.0>n  and the Froude number 15.0>rF , a 
"critical mode" is observed. Here, a solution to the problem for this case is 
given. The problem, in this case, differs from the previously considered 
one by non-uniform distribution of velocities in the weakly disturbed core, 
a significant reduction in the length of the vortex zone; the vertical 
compression of the flow continues to the end of the vortex zone. The 
versatility of the velocity distribution in the zones of weakly disturbed core 
and intense turbulent mixing is experimentally substantiated. With 
theoretical studies, using the basic equations of applied mechanics, a 
method for calculating the velocity field was developed, and the planned 
dimensions of the vortex zones were established. The comparison with 
experimental data showed satisfactory agreement. 

1 Introduction 

Stream-bank erosion brings huge losses worldwide to the economies of countries located in 
coastal zones. Agricultural lands, settlements and cities are being washed away [1-3]. 
Therefore, it is not surprising that there are many theoretical and experimental studies 
devoted to improving structures and aimed to develop the methods of the design 
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justification of regulatory structures [4-10]. The researchers paid main attention to 
determining the depth of local erosion near blind dams [11-15] and the conditions of 
lowland rivers. 

The foothill sections of the rivers have their own features, which consist of the 
morphology and the hydraulics of the flows. [16, 17]. On the foothill rivers of Uzbekistan 
(Zarafshan, Chirchik, Kashkadarya, Akhangaran and others), the slopes of the channel vary 
within 004.0001.0 i  , the kinetics of the flow is 5.015.0 rF  . Research for these conditions 
was conducted for blind and through transverse structures [17-19]. In the laboratory of 
Hydrotechnical Engineering of the Institute, new structures were developed, and large-scale 
studies of the operation of combined dams with a through part of piles driven into the river 
bottom were carried out [20-24]. They are the most capital, and the disadvantage is their 
high cost. 

A combined dam is proposed, consisting of a blind part built of local soil and a through 
part built of reinforced concrete tetrahedrons laid in the dam's head. 

Theoretical and experimental studies were carried out in a flume of a variable slope, the 
physical picture of the flow constrained by a combined dam with a through part of 
tetrahedrons was revealed, and a method for their calculation was developed. 

2 Materials and Methods 

The experimental research methods were described in detail in our previous articles [1, 2]. 
Here we give the main characteristics of the flow and the channel: the dimensions of the 
flume, the building factor of the through part 4.01.0 P , WWP з / (building area of the 
through part, the total area), the angle of the dam installation 09075Д , the bottom slope 

0.0001Дi  before 0.004  
Modeling was performed according to Froude. In all experiments, the turbulent mode 

was maintained. The condition of the planned task 6>/ hВ  was met. Water flow rates were 
measured by the Thompson triangular weir. The free surface was fixed using a measuring 
needle with leveling. Water velocities were measured with a SANIIRI micro-spinner with a 
TsISNV-5 electronic sensor. The main provisions of the theory of turbulent jets propagating 
in a confined space were used in theoretical studies: the scheme of dividing the flow into 
hydraulic homogeneous zones: a weakly disturbed core, intense turbulent mixing, and 
reverse currents. 

To solve the problem, the basic equations of applied mechanics, law of conservation of 
momentum in the flow, conservation of the flow rate, and differential equation of non-
uniform motion recorded for the transit flow were used, considering the tangential turbulent 
stresses on the side surfaces, according to Prandtl. 

3 Results and Discussion 

The physical nature of the flow around the combined dam, the through part of which is 
made of tetrahedrons, has much in common with the flow around the combined dam with 
the through part from the pile rows [23-28] for flat rivers; though it differs both 
qualitatively and quantitatively. The flow occurs with the formation of a backwater section 
between sections F-F and 0-0, planned compression between sections 0-0 and ПС, vertical 
compression between sections ПС-ВС, a recovery area between sections ВС and Б-Б (Fig. 
1). 
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In the design scheme: beam 0’-1 is the boundary between the core and the zone of 
intense turbulent mixing; 0’-2 is the outer boundary of the zone of intense turbulent mixing; 
0’-3  is the boundary of the zone of zero velocities; 0’-4  is the transit flow boundary; МП, 
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The boundaries of zones of intense turbulent mixing 0’-1 С1 =0.0, 0’-2 С2 =0,37 were 
experimentally established (Figure 1) 

 
Fig.1. Jet expansion coefficients 

It was also found experimentally that the distribution of velocities in the zone of a weakly 
disturbed core obeys the theoretical Schlichting – Abramovich dependence (Fig. 2). 
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Fig.2. Dimensionless velocity profiles in the core 

 
Fig.3. Dimensionless velocity profiles in the region of intensive turbulent mixing 

Theoretically, it was necessary to evaluate the influence of the longitudinal slope and other 
characteristics of the flow and structure on the patterns of change in the maximum 

velocities in the core махи , along the opposite bank *
и and the determination of the vortex 

zone length  Lв. 
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Fig. 4. Diagram of the flow deformed by a transverse dam on the foothill sections of rivers (a 
"critical" mode) 

To determine махи , we use the equation of conservation of momentum in the flow, written 
for the cross-sections of ПС and X-X 
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Suppose we neglect the last term that considers the value of the component of the fluid 

weight and assume a uniform distribution of velocities in the weakly disturbed core F1 = 1. 
In that case, we arrive at the dependence obtained earlier [7]. 

Equation of conservation of flow rate for sections PS and X-X is written as ПС и Х-Х 
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In equation (10), a root less than one is taken as the main root, and a root greater than 

one is discarded as it contradicts the physics of the phenomenon. 
The length of the vortex zone is determined from the equation of non-uniform motion 

recorded with account for the tangential turbulent stresses on the side surfaces [1]. 
The order of the solution remains the same, so we write it down finally as 
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б ; Д are the resistance factors of the bank and bottom 
The design of a combined dam is considered, the blind part of which is made of local 

soil and the through part is made of tetrahedrons. Such a dam combines the positive 
features of the blind and through structures. Because the through part does not require 
driving into the bottom of the reservoir, construction costs are significantly reduced. 
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б ; Д are the resistance factors of the bank and bottom 
The design of a combined dam is considered, the blind part of which is made of local 

soil and the through part is made of tetrahedrons. Such a dam combines the positive 
features of the blind and through structures. Because the through part does not require 
driving into the bottom of the reservoir, construction costs are significantly reduced. 

The features of such structures operation were experimentally revealed. The formation of 
two flow modes was established: a "calm" mode at 3.0<Дn ,  15.0<rF  and a 

"critical" mode at 3.0>Дn , 15.0>rF . The second flow scheme is considered here. A 

jet character of the flow around a combined dam with a through part of tetrahedrons was 
stated. It was found that in the zone of a weakly disturbed core, the distribution of velocities 
in the plan has a non-uniform character and obeys the theoretical Schlichting – Abramovich 
dependence (Fig. 2). 

The distribution of velocities in the zone of intense turbulent mixing is universal and 
obeys the theoretical Schlichting-Abramovich dependence (Figure 3). 

The boundaries of zones of intense turbulent mixing 0-1 С1 =0.0, 0-2 С2 =0.37 were 
experimentally established (Figure 1) 

A method for calculating the field of flow velocities constrained by a combined dam 
with a through part of tetrahedrons for the conditions of the foothill sections of rivers was 
developed. The task is implemented for the second "calm" mode using the integral relation 
characterizing the law of conservation of momentum, the equations of conservation of flow 
rate and non-uniform motion recorded, taking into account the tangential turbulent stresses 
on the side surfaces of the vortex according to Prandtl. Calculated dependencies are 
obtained to determine the change in the maximum velocities in the weakly disturbed core 

U  at the opposite bank U and the length of the vortex zones in the spreading area 

21, вв  . Direct calculations and their comparison with the experimental data (Fig. 4) 
showed the correctness of the theoretical solutions obtained. 

4 Conclusions 

1. A change in the longitudinal slope of the bottom, typical for foothill rivers areas, from 
0.002Di   to 0,004Di   leads to a change in the hydraulic and kinematic 

characteristics of the flow. At 3.0>n  and the Froude number 15.0>rF , a "critical" 
mode is observed. 

2. In the presence of a "critical" mode, the distribution of velocities in the zone of a 
weakly disturbed core is non-uniform and obeys the theoretical Schlichting-Abramovich 
dependence. 

3. The expansion coefficient of the zone of intense turbulent mixing is 0.37 versus 0.27 in 
the theory of turbulent jets. The distribution of velocities in this zone is also universal. 

4. The section of the maximum vertical compression coincides with the end of the vortex 
zone. 

5. Using the main provisions of the theory of turbulent jets, a method for calculating the 
velocity field and dependence for determining the length of the vortex zone are 
proposed. 
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