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Abstract— Contrast enhancement algorithms are important 

in improving the quality of X-ray images, helping medical 

professionals diagnose and treat patients more accurately. Most 

of the contrast enhancement algorithms available today are 

applied to the entire image without taking into account local 

features and differences in contrast in different areas of the 

image. This can lead to undesirable consequences such as loss of 

detail in the dark areas of the image or saturation in the bright 

areas. In this regard, in this work, a contrast enhancement 

approach is proposed, which provides contrast enhancement in 

each fragment of the image, taking into account the local 

features of the X-ray image. This approach is based on dividing 

the image into small fragments and applying different contrast 

enhancement algorithms to each fragment. Each fragment was 

evaluated according to the RMS criterion, and the algorithm 

that gave the largest value was selected as the optimal one for 

this fragment. In addition, the research paper analyzed the 

effectiveness of the approach developed based on the test results 

of X-ray images. 

Keywords— X-ray image, Image quality, Medical diagnosis, 

Histogram equalization, Contrast stretching, Contrast 

enhancement algorithm, Image processing, Brightness, Pixel, 

RMS value. 

I. INTRODUCTION 

Today, X-ray diagnosis plays a key role in medical 
practice, as it allows medical professionals to obtain important 
information about the state of the patient's internal organs and 
tissues [1]. However, the quality of X-ray images can be 
degraded by various factors such as low light, noise, or low 
contrast between tissues [2]. In such cases, contrast 
enhancement algorithms are important to improve diagnostic 
accuracy and image quality. 

Contrast enhancement algorithms are image processing 
techniques designed to increase the difference between the 
brightness of different areas of the image [3]. Application of 
these algorithms allows us to see more clearly the important 
details and structures of the image. Contrast enhancement in 
X-ray diagnosis can be a decisive factor in identifying 
pathologies or other abnormalities. Using contrast 
enhancement algorithms helps improve the visual appearance 
of various tissues and structures, such as bones, organs, and 

blood vessels, and provides a more accurate image 
interpretation (Fig. 1). Therefore, among image preprocessing 
algorithms and approaches [4-6], the role of contrast 
enhancement algorithms is incomparable. 

  

A) B) 

Fig. 1. A) Original X-ray image with low contrast, B) Result of applying 
contrast enhancement algorithm to the original image 

Although many improved and new methods of contrast 
enhancement have been proposed in recent years [7-13], they 
have their limitations. For example, they are usually applied 
to the entire image without taking into account local features 
and differences in contrast in different areas of the image. This 
can lead to undesirable consequences such as loss of detail in 
the dark areas of the image or saturation in the bright areas. In 
this regard, this article proposes a contrast enhancement 
approach that provides contrast enhancement in each fragment 
of the image, taking into account the local features of the X-
ray image. This approach is based on dividing the image into 
small fragments and applying different contrast enhancement 
algorithms to each fragment independently of the others. 

This research work describes selected image contrast 
enhancement algorithms based on a literature review, results 
of testing them for the whole image and its fragments, as well 
as the advantages and limitations of the proposed approach. 

II. RELATED WORK 

Algorithms for increasing the contrast allow to improve 
the image's visual appearance. However, they may differ 
depending on the type of image. For example, a method or 
algorithm that is effective for enhancing the contrast of a 
satellite image may not be effective for an X-ray image. 



As the object of this study, only X-ray images were taken, 
and factors such as insufficient radiation during their 
acquisition, patient behavior, and limitations of imaging 
equipment led to insufficient X-ray image contrast. In this 
case, it is advisable to increase the contrast of the X-ray image 
obtained so that the patient does not receive additional 
radiation without involving him in repeated examinations. 
Below is an analysis of much literature on image contrast 
enhancement. It is reported in [14] that the implementation of 
the histogram equalization algorithm is simple and 
convenient, so it is popular among contrast enhancement 
algorithms. Also, this algorithm is recognized as the most 
optimal option for increasing the contrast of medical images 
[15]. Because the histogram equalization algorithm does not 
have adjustable parameters and it can perform calculations 
quickly [12]. 

As an improved variant of the histogram equalization 
algorithm, the CLAHE (Contrast Limited Adaptive 
Histogram Equalization) algorithm was proposed in [16], and 
its main advantage is the thresholding of the histogram. The 
algorithm increases the image's contrast by redistributing the 
brightness in the part that exceeds the specified threshold. X-
ray image contrast enhancement by proposing an Otsu 
threshold instead of a threshold value in the CLAHE 
algorithm was tested in [17] and this approach was found to 
be effective. Also, comparisons of this algorithm with 
adaptive histogram equalization and global histogram are 
presented in [18], among which the CLAHE algorithm is 
superior in contrast enhancement of X-ray images. 

A contrast stretching algorithm that uses the largest and 
smallest image brightness values to fill the range of image 
brightnesses is presented in [19]. The contrast stretching 
algorithm [20] was used to increase the contrast of low-
contrast images created under adverse conditions such as fog, 
resulting in improved visual images and comparisons with 
evaluation criteria such as MSE and SSIM. Also, the problem 
of recognizing a person's face image taken in dark conditions 
or at night was considered in [21], where the contrast 
stretching algorithm was used to normalize the contrast. 

It is very important to evaluate the performance of 
contrast enhancement algorithms in image analysis. Image 
contrast assessment is based on subjective and objective 
criteria. In this case, a lot of time is spent on the subjective 
evaluation of the X-ray image by a medical expert, and 
therefore, it is appropriate to use non-standard objective 
criteria for contrast evaluation in the automation of image 
processing. Usually, objective criteria without references are 
used more in practice. Because in various fields, especially 
X-ray images taken directly from X-ray imaging equipment, 
there will be no original reference image intact. In this work, 
no-reference criteria for X-ray image contrast evaluation 
were analyzed. 

Weber's criterion is one of the first criteria for evaluating 
image contrast. When calculating this criterion value, the 
brightness of the object and the background in the image are 
taken into account. However, it was shown in [9] that the 
Weber criterion does not work well when it is difficult to 
distinguish the background from the objects.  

One of the widely used criteria for evaluating image 
contrast is the Michelson criterion. This criterion uses the 
maximum and minimum brightness values of the pixels that 
make up the image to evaluate the contrast. However, it was 

pointed out in [10] that this criterion is unsatisfactory for 
evaluating text contrast in a gray image. Also, since the 
largest and smallest brightness values in X-ray images are 
often 0 and 255, the Michelson criterion is not suitable for 
evaluating the contrast of X-ray images [6]. In addition, 
various distortions and noises in the image prevent the correct 
assessment of contrast. 

Many literatures use the RMS criterion to evaluate image 
contrast [22-24]. In particular, the RMS criterion was 
presented in [25] as a standard model for image contrast 
evaluation, and based on its value, the CLAHE algorithm was 
proven to be effective. In [26], the RMS criterion was used to 
evaluate the contrast, which is considered an important 
parameter determining the quality of the image, in which 
RMS is recognized as a criterion equivalent to the standard 
deviation of the brightness of the image. Also, RMS is 
presented in works [27,28] as the most reliable and widely 
used criterion for image contrast evaluation. This criterion is 
considered to be the one that gives the closest prediction to 
the observers' sensitivity in viewing images [29]. 

As a result of the literature analysis, histogram 
equalization, CLAHE, contrast stretching algorithms to 
enhance the contrast of X-ray images, and the RMS criterion 
were selected as the most reliable criteria for contrast 
evaluation and were used in the experiments. 

III. METHODOLOGY 

Algorithms selected for use in the study cannot adapt to 
the local characteristics of the image, and because they are 
applied only to the entire image, they increase the contrast in 
some parts of the image, which is their main disadvantage. 
Therefore, it is necessary to develop a new approach to 
increase the image contrast, taking into account the local 
characteristics of the image. For this, an approach to increase 
image contrast by dividing the image into fragments is 
proposed. 

In this work, the approach to increase the contrast of X-
ray images is carried out in the following steps: 

• Step 1. Separation of the image into fragments is 
carried out; 

• Step 2. An appropriate contrast enhancement 
algorithm is applied to each fragment; 

• Step 3. Each fragment is evaluated according to the 
RMS (Root mean square) criterion; 

• Step 4. An optimal algorithm is determined 
according to the RMS value for each fragment, and the whole 
image is formed by combining the fragments. 

The first step of the proposed approach is to divide the 
original X-ray image into small fragments. This is done for 
each fragment to adapt the contrast enhancement algorithms 
to that fragment, regardless of the rest of the fragments. 
Fragment sizes can be chosen differently depending on the 
desired detail and the nature of the image. Typically, 
fragment sizes should be small enough to account for 
differences in image contrast, but large enough to be 
statistically significant in the analysis. In this research, the 

case where the image is divided into 2n
 equal fragments is 

studied. 



The contrast enhancement algorithms used in the study 

are designated as 
1A −Histogram equalization, 

2A −CLAHE, 

3A −Contrast Stretching, and their description is detailed 

below: 

A. Histogram equalization 

This algorithm is used to evenly distribute the pixel 
intensities in the image over the entire range of intensity 
values [14]. It helps reduce the difference between the 
brightest or darkest pixels in the image, which helps improve 
image contrast [15]. The following formulas form the 
foundation of this algorithm: 
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where ks −  initial and kg −  output brightness, B−  range 

of brightness, jz −  number of brightness pixels, z −  overall 

number of pixels. 

In formula (3), the relationship between ks  and kg  is 

valid as follows: 

  ( )1 , 0,1,..., 1k ks T g k B−= = −       (3) 

B. CLAHE (Contrast Limited Adaptive Histogram 

Equalization) 

This algorithm improves image contrast by analyzing 
pixel intensities in small windows of the image [16]. It 
effectively takes into account the local features of the image 
and allows to preserve of details in places with different 
brightness levels. 

C. Contrast stretching. 

In contrast stretching, the contrast in the image is stretched 
from the range of intensity values it contains to cover the 
desired range of values [17,18] and it is also called 
normalization. When applying this method to the original 
image, the following formula is used: 
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max−  the maximum brightness value in the image, min−  

the minimum brightness value in the image, P  and Q− image 

sizes, cL −  is the image after the contrast was adjusted. 

D. RMS criterion 

The RMS criterion based on the standard deviation of the 
image brightness was used to evaluate the contrast 
enhancement algorithms presented above [19]. The global 
contrast is estimated by RMS, and its computation process is 
quick and easy. It has been demonstrated that this metric is a 
trustworthy predictor of the human contrast detection 
threshold in scenes with natural lighting [20]. RMS is 
calculated using the following formula: 
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where jL −  j   pixel intensity. 

IV. RESULTS 

Computational experiments used open base X-ray images 
available at www.kaggle.com to test the proposed approach. 
The results of applying the contrast enhancement algorithms 
individually to the entire original image are shown in Fig.1. 

  

Original image Histogram equalization 

  

CLAHE Contrast stretching 

Fig.1. The original image and the results of applying contrast enhancement 

algorithms to it and their corresponding RMS values 

The original X-ray image is divided into 2n
 equal 

fragments. Below are sample images for 2n =  and 4n =  

cases. Each fragment isolated in these samples is represented 
along with its RMS value. 

 

Original image fragments RMS values 
RMS=65.24 



 
Optimal algorithms for processed image 

fragments 

 
Processed image fragments RMS values 

RMS=77.68 

Fig.2. The result of dividing the original image into fragments in case 2n =  

 

Original image fragments RMS values 
RMS=65.24 

 
Optimal algorithms for processed image 

fragments 

 
Processed image fragments RMS values 

RMS=75.06 

Fig.3. The result of dividing the original image into fragments in case 4n =  

The obtained results showed that the proposed approach 
for contrast enhancement in X-ray images is significantly 
improved compared to the application of existing algorithms 
to the entire image. By adapting the algorithms to each 
fragment of the image, high contrast and clarity of the images 
was achieved, which helps to make a more accurate diagnosis. 
Also, in future studies, the accuracy of the research results can 
be improved by doing the following: 

• optimization of parameters of algorithms used in 
research; 

• using advanced methods of image contrast enhancement; 

• after increasing the contrast of image fragments, research 
results can be further improved by developing an efficient way 
to combine them. 

V. THE STRENGTHS AND WEAKNESSES OF THE APPROACH 

The main advantages of the proposed approach are: 

• increase the accuracy of the diagnosis: due to the 
increase in contrast, the details allow medical 
specialists to interpret the images more accurately and 
make a more informed diagnosis; 

• efficient use of algorithms: application of algorithms 
adapted to each image fragment allows to maximize 
their capabilities and achieve optimal results; 

• short processing time: parallel processing of image 
fragments and subsequent merging of optimal results 
can significantly reduce processing time, which is 
especially important in a clinical environment. 

• preservation of details and structures: the approach 
preserves details and textures in images, allowing 
doctors to analyze images more fully and accurately. 

It is also necessary to highlight some limitations of the 
developed approach, including: 

• the computational complexity of the proposed 
approach may be high and may not show good results 
when applied to some types of images. Also, after 
applying contrast enhancement algorithms to image 
fragments, when combining them again, the formation 
of lines between fragments is recognized as a 
disadvantage of the approach proposed in the work; 

• the need to develop specialized software: the 
successful application of the method requires the 



development of specialized software, which may 
require significant time and financial costs; 

• dependence on the quality of the original images: the 
effectiveness of the approach may depend on the 
quality of the original radiographs, which may be a 
limiting factor in some clinical situations; 

• the need to train medical professionals: for the 
approach to be successful, it is necessary to train 
medical professionals in the use of new software and 
image processing techniques. 

VI. CONCLUSION 

In this research, a new approach to contrast enhancement 
in X-ray images was presented. Using existing contrast 
enhancement algorithms on a fragment-by-fragment basis has 
been shown to significantly improve image contrast and 
clarity, both quantitatively and qualitatively. The developed 
approach not only increased the intensity differences between 
different areas of the image, but also preserved the details and 
structures in the images, which serves to increase their 
informativeness. 

The advantages of the proposed approach include 
increased diagnostic accuracy, efficient use of algorithms, 
reduced processing time, and preservation of details and 
structures in images. However, this approach has certain 
limitations, including the dependence on the quality of the 
original images and the need to train medical personnel. 
However, the efficiency and accuracy of the approach can be 
improved by improving contrast enhancement algorithms or 
developing new ones. 
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