
Cyclic Scheduler



Today

> Intro to real-time scheduling

> Cyclic executives
• Scheduling tables

• Frames

• Frame size constraints

• Generating schedules

• Non-independent tasks

• Pros and cons



Real-Time Systems 

> The correctness of a real-time system depends not just on the validity 
of results but on the times at which results are computed

• Computations have deadlines

• Usually, but not always, ok to finish computation early

> Hard real-time system: missed deadlines may be catastrophic

> Soft real-time system: missed deadlines reduce the value of the 
system

> Real-time deadlines are usually in the range of microseconds through 
seconds



Real-Time System Examples 

> Hard real-time
• Most feedback control systems

- E.g. engine control, avionics, …
- Missing deadlines affects stability of control

• Air traffic control
- Missing deadlines affects ability of airplanes to fly

> Soft real-time
• Windows Media Player
• Software DVD player
• Network router
• Games
• Web server
• Missing deadlines reduces quality of user experience



Real-Time Abstractions 

> System contains n periodic tasks T1, … , Tn
> Ti is specified by (Pi, Ci, Di)

• P is period
• C is worst-case execution cost
• D is relative deadline

> Task T is “released” at start of period, executes for Ci time units, must finish 
before Di time units have passed

• Often Pi==Di, and in this case we omit Di

> Intuition behind this model:
• Real-time systems perform repeated computations that have characteristic rates and 

response-time requirements

> What about non-periodic tasks?



Real Time Scheduling 

> Given a collection of runnable tasks, the scheduler decides which to 
run

• If the scheduler picks the wrong task, deadlines may be missed

> Interesting schedulers:
• Fixed priorities

• Round robin

• Earliest deadline first (EDF)

• Many, many more exist

> A scheduler is optimal when, for a class of real-time systems, it can 
schedule any task set that can be scheduled by any algorithm



Real-Time Analysis 

> Given:
• A set of real-time tasks
• A scheduling algorithm

> Is the task set schedulable?
• Yes → all deadlines met, always
• No → at some point a deadline might be missed

> Important: Answer this question at design time

> Other questions to ask:
• Where does worst-case execution cost come from?
• How close to schedulable is a non-schedulable task set?
• How close to non-schedulable is a schedulable task set?
• What happens if we change scheduling algorithms?
• What happens if we change some task’s period or execution cost?



Cyclic Schedule

> This is an important way to sequence tasks in a real-time system
• We’ll look at other ways later

> Cyclic scheduling is static – computed offline and stored in a table
• For now we assume table is given
• Later look at constructing scheduling tables

> Task scheduling is non-preemptive
• No RTOS is required

> Non-periodic work can be run during time slots not used by periodic 
tasks

• Implicit low priority for non-periodic work
• Usually non-periodic work must be scheduled preemptively



Cyclic Schedule Table 

> Table executes completely in one hyperperiod H
• Then repeats

• H is least common multiple of all task periods

• N quanta per hyperperiod

> Multiple tables can support multiple system modes
• E.g., an aircraft might support takeoff, cruising, landing, and taxiing modes

• Mode switches permitted only at hyperperiod boundaries
- Otherwise, hard to meet deadlines



Example

- Consider a system with four tasks
• T1 = (4,1)
• T2 = (5, 1.8)
• T3 = (20, 1)
• T4 = (20, 2)

- Possible schedule: 

- Table starts out with:
(0, T1), (1, T3), (2, T2), (3.8, I), (4, T1), …



Refinement: Frames 

> We divide hyperperiods into frames
• Timing is enforced only at frame boundaries

• Each task is executed as a function call and must fit within a single frame

• Multiple tasks may be executed in a frame

• Frame size is f

• Number of frames per hyperperiod is F = H/f



Frame Size Constraints 

1. Tasks must fit into frames
• So, f≥ Ci for all tasks

• Justification: Non-preemptive tasks should finish executing within a single 
frame

2. f must evenly divide H
• Equivalently, f must evenly divide P for some task i

• Justification: Keep table size small



More Frame Size Constraints 

3. There should be a complete frame between the release and deadline 
of every task

• Justification: Want to detect missed deadlines by the time the deadline 
arrives

• Therefore: 2f – gcd (Pi, f) ≤ Di for each task i



Example Revisited 

> Consider a system with four tasks
• T1 = (4,1), T2 = (5, 1.8), T3 = (20, 1), T4 = (20, 2)

• H = lcm (4,5,20) = 20

> By Constraint 1: f≥ 2

> By Constraint 2: f might be 1, 2, 4, 5, 10, or 20

> By Constraint 3: only 2 works



Task Slices 

> What if frame size constraints cannot be met?
• Example: T = { (4, 1), (5, 2, 7), (20, 5) }

- By Constraint 1: f ≥ 5

- By Constraint 3: f ≤ 4

> Solution: “slice” a task into smaller sub-tasks
• So (20, 5) becomes (20, 1), (20, 3), and (20, 1)

• Now f = 4 works

> What is involved in slicing?



Design Decision Summary 

> Three decisions:
• Choose frame size

• Partition tasks into slices

• Place slices into frames

> In general these decisions are not independent



Cyclic Executive Pseudocode

// L is the stored schedule
current time t = 0;
current frame k = 0;
do forever

accept clock interrupt;
currentBlock = L(k);
t++;
k = t mod F;

• if last task not completed, take appropriate action;
• execute slices in currentBlock;
• sleep until next clock interrupt;



Summary

> Cyclic executive is one of the major software architectures for 
embedded systems

• Historically, cyclic executives dominate safety-critical systems

• Simplicity and predictability win

• However, there are significant drawbacks

• Finding a schedule might require significant offline computation




