Topic 7.

Exponent and logarithm

 $f(x) = 2^{x}$ function is called exponential (exponential) function because unknown x variable is an indicator. Him $g(x) = x^{2}$ such as level functions with mixed up do not send should, then variable basis will be

In general is indicative function

$$f(x) = a^x$$

in appearance is a function. In this *a* - positive constant number.

> Exponent properties

If a and b are positive numbers and x and y are any real numbers, the following holds:

1)
$$a^{x+y} = a^{x}a^{y}$$
; 2) $a^{x-y} = \frac{a^{x}}{a^{y}}$; 3) $(a^{x})^{y} = a^{xy}$ 4) $(ab)^{x} = a^{x}b^{x}$

If a > 0 and $a \ne 1$ if, exponential function $f(x) = a^x$ grow up is going or is decreasing and continuously that it was for, u f^{-1} reverse to the function have it is *a* justified **logarithmic** is called a **function** and \log_a with is determined. If the opposite function from the formula if used

$$f^{-1}(x) = y \Leftrightarrow f(y) = x$$

then, the following expression come output :

$$\log_a x = y \Leftrightarrow a^y = x$$

Har one $x \in R$ for $\log_a(a^x) = x$; $a^{\log_a x} = x$ will be .;

Logarithm properties

If x and y are positive numbers, the following holds:

1)
$$\log_{a}(xy) = \log_{a} x + \log_{a} y$$
; 2) $\log_{a}\left(\frac{x}{y}\right) = \log_{a} x - \log_{a} y$; 3) $\log_{a}(x^{r}) = r \log_{a} x$

Solved from examples samples

Example 7.1. Given the equation solve : $\log_x \frac{1}{32} = -5$.

Solution:

Given logarithmic in Eq x only

$$\begin{cases} x > 0 \\ x \neq 1 \end{cases}$$

condition according to $x \in (0;1) \cup (1;+\infty)$ in the interval values acceptance do it takes The solution of the equation is defined as:

$$\log_{x} \frac{1}{32} = -5 \Leftrightarrow$$
$$x^{-5} = \frac{1}{32} \Leftrightarrow$$
$$x^{-5} = 2^{-5} \Leftrightarrow$$
$$x = 2$$

This determined x = 2 solution $x \in (0,1) \cup (1,+\infty)$ in the interval there is . So , it is given logarithmic equation the solution x = 2 will be

Example 7.2. Given the equation solve : $5e^{-3x} = 42$.

Solution:

$$e^{-3x} = \frac{42}{5};$$

$$\ln e^{-3x} = \ln\left(\frac{42}{5}\right);$$
$$-3x = \ln\left(\frac{42}{5}\right);$$
$$x = \frac{\ln\left(\frac{42}{5}\right)}{-3} = -\frac{1}{3}\ln\left(\frac{42}{5}\right).$$

Example 7.3. The following inequality solve $: \log_{0.5}(x-1) > -1$

Solution:

x of identification field will be:

$$x - 1 > 0 \Rightarrow$$
$$x > 1 \Rightarrow x \in (1; +\infty)$$

Now the given inequality is solved:

$$x - 1 < 0, 5^{-1};$$
$$x - 1 < 2 \Longrightarrow x < 3;$$

So , inequality the solution $x \in (1; +\infty)$ with intersection as a result $x \in (1; 3)$ will be

Example 7.4. The following inequality solve : $4^x - 29 \cdot 2^x + 168 \le 0$.

Solution:

To solve the given inequality, first, the exponent bases are equated:

$$(2^{2})^{x} - 29 \cdot 2^{x} + 168 \le 0;$$

$$2^{2x} - 29 \cdot 2^{x} + 168 \le 0;$$

$$2^{2x} = (2^{x})^{2};$$

$$(2^{x})^{2} - 29 \cdot 2^{x} + 168 \le 0;$$

Now this harvest has been in inequality $t = 2^x$ replacement done is increased. This leads to the following inequality:

$$t^2 - 29t + 168 \le 0$$

This inequality is solved as follows:

$$D = 29^{2} - 4 \cdot 168 = 169;$$

$$t_{1} = \frac{29 + 13}{2} = 21;$$

$$t_{2} = \frac{29 - 13}{2} = 8;$$

$$(t - 8)(t - 21) \le 0$$

So , *t* variable according to inequality the solution $t \in [8; 21]$ will be Now initial *x* variable according to the solution get for $2^{2x} = t$ used :

$$8 \le 2^{x} \le 21 \Leftrightarrow \begin{cases} 2^{x} \ge 8, \\ 2^{x} \le 21 \end{cases};$$
$$\begin{cases} 2^{x} \ge 8, \\ 2^{x} \le 21 \end{cases} \Rightarrow \begin{cases} 2^{x} \ge 2^{3}, \\ 2^{x} \le 2^{\log_{2} 21} \end{cases} \Rightarrow \begin{cases} x \ge 3, \\ x \le \log_{2} 21 \end{cases}$$

Hence, inequality the solution $x \in [3; \log_2(21)]$ the fact that known will be

Example 7.5 .Given $y = \ln \frac{x+6}{x}$ function complete learn and graph it.

Solution:

a) Initially given of the function identification field found :Logarithm ik function argument only is considered positive .

$$\frac{x+6}{x} > 0 \Rightarrow \frac{(x+6) \cdot x}{x^2} > 0 .$$

In this fraction in the photo $x_1 = -6$, $x_2 = 0$ roots will be Logarithmic function argument positive the interval $(-\infty; -6) \cup (0, +\infty)$ in which will be That is, given of the function identification field $(-\infty; -6) \cup (0, +\infty)$ will be

b) Vertical asymptotes to find for $x_1 = -6$ at the point - on the left, $x_2 = 0$ at the point - right on the side limits is :

$$\lim_{x \to -6-0} \ln \frac{x+6}{x} = \left\{ \ln \frac{-6-0+6}{-6} \right\} = \left\{ \ln \frac{0}{6} \right\} = -\infty \Rightarrow x = -6 \text{ - vertical asymptote ;}$$
$$\lim_{x \to +0} \ln \frac{x+6}{x} = \left\{ \ln \frac{0+6}{0} \right\} = \left\{ \ln \frac{6}{0} \right\} = \infty \Rightarrow x = 0 \text{ - vertical asymptote ;}$$

c) Function even-odd checked :

$$f(-x) = \ln \frac{-x+6}{-x} \neq f(x) = \ln \frac{x+6}{x};$$
$$f(-x) = \ln \frac{-x+6}{-x} \neq -f(x) = -\ln \frac{x+6}{x}.$$

From this given function it turns out that it is neither even nor odd.

- d) Given function logarithmic function is not periodic.
- e) Now function of the graph coordinate arrows the crossing points are determined:

Function graph o_y arrow with does not intersect because x = 0 point of the function identification to the field belongs to it's not .

Function of the graph o_x axis cut passing the point to determine the given function for is equal to 0:

$$f(x) = 0 \Rightarrow \ln \frac{x+6}{x} = 0 \Rightarrow \frac{x+6}{x} = 1 \Rightarrow x+6 = x$$

The resulting equation has no solutions. Therefore, the function of the graph O_x arrow with intersected points are not available.

f) of the function slope asymptotes found :

$$k = \lim_{x \to \pm \infty} \frac{\ln \frac{x+6}{x}}{x} = \left\{ \ln \frac{1}{\infty} \right\} = 0;$$
$$b = \lim_{x \to \pm \infty} \ln \frac{x+6}{x} = \ln 1 = 0.$$

So , is a function of the graph horizontal asymptote y = 0, that is Ox arrow will be

g) Given of the function the first in order the derivative is found:

.

$$f'(x) = \left(\ln\frac{x+6}{x}\right)' = \left(\ln(x+6) - \ln x\right)' = \frac{1}{x+6} - \frac{1}{x}.$$

The notation of the first order derivative is studied:

$$f'(x) = \frac{1}{x+6} - \frac{1}{x} = \frac{-6}{x(x+6)}.$$

x	<i>x</i> < -6	x = -6	-6 < x < 0	x = 0	x > 0
f'(x)	_	Not available	Not available	Not available	+
f(x)	Decreasing	$-\infty$	Not defined	8	Growing

So, it is being studied of the function there are no extremum points.

h) Given of the function second in order the derivative is found:

$$f''(x) = \left(\frac{1}{x+6} - \frac{1}{x}\right)' = -\frac{1}{\left(x+6\right)^2} + \frac{1}{x^2} = \frac{-x^2 + x^2 + 12x + 36}{x^2 \left(x+6\right)^2} = \frac{12\left(x+6\right)}{x^2 \left(x+6\right)^2} = \frac{12}{x^2 \left(x+6\right)^2$$

The notation of the second order derivative is studied:

x	<i>x</i> < -6	x = -6	-6 < x < 0	x = 0	<i>x</i> > 0
f''(x)	_	Not	Not available	Not	+
		available		available	
f(x)	Convex	-∞	Not defined	œ	Concave
	graph				graph

i) Given function graph while as follows :

Figure 7.1

Independent work for issues

The following given equations solve (7.1-7.15):

7.1 $\ln x = -3$; 7.2 $2 \lg x = \lg 2 + \lg (3x - 4);$ 7.3 $\log_3(x+25) - \log_3(x-1) = 3;$ 7.4 $\lg x + \lg (x - 3) = 1;$ 7.5 lg(3x-2) = 2;7.6 $\lg x + \lg (x - 1) = \lg (4x);$ 7.7 $\log_{9}(x-5) + \log_{9}(x+3) = 1;$ 7.8 $\log_2(x-2) + \log_2(x+1) = 2;$ 7.9 $3^{x} - 2 = 12$; **7.10** $3^{1-x} = 2$; **7.11** $4^x = 5^{x+1}$; **7.12** $6^{1-x} = 10^{x}$; **7.13** $\frac{10}{1+e^{-x}}=2$; 7.14 $e^{2x} - 2e^{x} = 15$; **7.15** $5^{2x} - 5^{x} - 12 = 0$;

The following given inequalities solve (7.16-7.23):

7.16
$$\log_{\frac{1}{5}}(5x-1) \ge 0$$
;
7.17 $\log_{\frac{1}{3}}x \ge \log_{x} 3 - \frac{5}{2}$;
7.18 $\log_{7}\frac{2x-6}{2x-1} > 0$;
7.19 $2\log_{5} x - \log_{x} 125 < 1$;
7.20 $25^{-x} - 5^{-x+1} \ge 50$;
7.21 $\frac{4^{x} + 2x - 4}{x-1} \le 2$;
7.22 $\sqrt{9^{x} + 3^{x} - 2} \ge 9 - 3^{x}$;
7.23 $\frac{6-3^{x+1}}{x} > \frac{10}{2x-1}$;

Given function learn and graph make (7.24-7.40):

7.24
$$f(x) = xe^{x}$$
;
7.25 $f(x) = (x^{2} - 1)e^{x}$;
7.26 $f(x) = (x + 1)e^{-x}$;
7.27 $f(x) = x^{2}e^{-x}$;
7.28 $f(x) = x \ln x$;
7.29 $f(x) = (x + 2) \ln x$;
7.30 $f(x) = (x - 2) \ln x$;
7.31 $f(x) = (x^{2} - 4) \ln (x + 1)$;
7.32 $f(x) = (x^{2} - 7x + 12) \ln x$;
7.33 $f(x) = \frac{e^{x}}{x}$;
7.34 $f(x) = \frac{e^{x}}{x^{2} - 1}$;
7.35 $f(x) = \frac{\ln x}{x}$;

- **7.36** $f(x) = \frac{\ln x}{x^2 7x + 12};$
- **7.37** $f(x) = (x+2)\log_2 x$;
- **7.38** $f(x) = x \log_2 x$;
- **7.39** $f(x) = x \cdot 2^{x}$;
- **7.40** $f(x) = \frac{e^x + e^{-x}}{e^x e^{-x}};$

Answers

7.1. $x = e^{-3}$ **7.2.** $x_1 = 2, x_2 = 4$ **7.3.** *x* = 2 **7.4.** $x_1 = -2, x_2 = 5$ **7.5.** *x* = 34 **7.6.** $x_1 = 0, x_2 = 5$ **7.7.** $x_1 = -4, x_2 = 6$ **7.8.** $x_1 = -2, x_2 = 3$ **7.9.** $x = \log_3 14$ **7.10.** $x = 1 - \log_3 2$ **7.11.** $x = \frac{\log_4 5}{1 - \log_4 5}$ **7.12.** $x = \frac{\lg 6}{1 + \lg 6}$ **7.13.** $x = -\ln 4$ **7.14.** $x = \ln 5$ **7.15.** $x = \log_5 4$ **7.16.** $x \in \left(\frac{1}{5}; \frac{2}{5}\right)$ **7.17.** $x \in (0;1) \cup (\sqrt{3};9)$ **7.18.** $x \in \left(-\infty; \frac{1}{2}\right)$ **7.19.** $x \in \left(0; \frac{1}{5}\right) \cup \left(1; 5\sqrt{5}\right)$ **7.20.** $x \in (-\infty; -\log_5 10]$ **7.21.** $x \in \left[\frac{1}{2}; 1\right]$ **7.22.** $x \in \left[\log_3 \frac{83}{19}; \infty \right)$

7.23.
$$x \in \left(0; \frac{1}{2}\right)$$