#### Topic 4.

### **Functions** . Function concept

A function is this two collection elements between compatibility to install applicable has been main mathematician from concepts one is considered

*f* the rule given let it be If *x* of the collection every one *x* to the element *f* the rule according to *y* in the collection the only one *y* the item is suitable if put, then *x* in the collection  $y = f(x), x \in X, y \in Y$  **function given** is called

*x* collection of the function **identification field** is called and D(f) such as is determined .*Y* of the function changes collection of the function **values field** is called and E(f) such as is determined.

*Oxy* of the plane (x, f(x)) points collection y = f(x) of the function graph is called

Function : 1) analytical ; 2) graphic ; 3) schedule through to be given can

## Function main characteristics

If f(x) function his own x identification in the field to zero relatively symmetrical is optional  $x \in X$  for f(x) = f(-x) equality if done couple is called

If f(x) function x identification of the field optional  $x \in X$  for f(-x) = -f(x)equality if done odd is called

If so  $T \neq 0$  number is available if and every how  $x \in X$  for the following conditions : 1)  $x + T \in X$ ; 2) f(x+T) = f(x) if done, then y = f(x) function periodic is T - y = f(x) called of the function period is called

*f* function  $E \subset D(f)$  in the collection limited is called if  $\exists A : \forall x \in E | f(x) | \le A$ if Hypothesis let's do y = f(x) function D = (f) in the collection determined and  $E \subset D = (f)$  let it be

If 
$$\forall x_1, x_2 \in E$$
:  
 $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$  if $(f)$  *E* at growing;  
 $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$  if $(f)$  *E* decreasing it's not;  
 $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$  if $(f)$  *E* decreasing  
 $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$  if $(f)$  *E* decreasing  
 $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$  if $(f)$  *E* growing water it's not.

Above given four get up E at monotonous is called growing and decreasing while E at strictly monotonous is called

# Solved from examples samples

**Example 4.1.**  $y = \frac{\sqrt{x^2 - 4}}{2^x (x - 6)} + \ln (x + 10)$  of fuchsia identification find the field.

# **Solution :**

Couple level root under expression negative not to be , of the fraction the denominator to zero equal to absence , logarithm sign under expression while positive to be need because of , of the function identification field the following inequalities solve through found :

$$\begin{cases} x^{2} - 4 \ge 0, \\ 2^{x} (x - 6) \ne 0, \\ x + 10 > 0, \end{cases} \quad \text{Or} \begin{cases} (x - 2) (x + 2) \ge 0, \\ x \ne 6, \\ x > -10, \end{cases}$$

From this

$$\begin{cases} x \in (-\infty; -2] \cup [2; +\infty), \\ x \neq 6, \\ x \in (-10; +\infty). \end{cases}$$

of the system all inequalities one of time in itself of the variable x that satisfies values  $x \in (-10; -2] \cup [2; 6] \cup (6; +\infty)$  will be So , y of the function identification field  $D(y): (-10; -2] \cup [2; 6] \cup (6; +\infty)$ .

**Example 4.2.**  $y = 3 \arccos\left(\frac{x}{3} + \frac{5\pi}{7}\right) - 4$  of the function values field E(y) find the

## **Solution :**

arccos x of values field  $E(y) = [0; \pi]$  or different  $0 \le \arccos x \le \pi$  way to write can  $\arccos\left(\frac{x}{3} + \frac{5\pi}{7}\right)$  function  $\arccos x$  from x abscissa arrow across shift through get can Such changes to the range effect doesn't do it , that's it because of  $0 \le \arccos\left(\frac{x}{3} + \frac{5\pi}{7}\right) \le \pi$  will be

 $3 \arccos\left(\frac{x}{3} + \frac{5\pi}{7}\right)$  function  $\arccos\left(\frac{x}{3} + \frac{5\pi}{7}\right)$  of  $O_y$  arrow across three times stretched out condition, that is  $0 \le 3 \arccos\left(\frac{x}{3} + \frac{5\pi}{7}\right) \le 3\pi$  will be

Now last stage ordinate arrow across four unity down shift done is increased . And this the following to inequality take comes :

$$0 - 4 \le 3 \arccos\left(\frac{x}{3} + \frac{5\pi}{7}\right) - 4 \le 3\pi - 4 \Leftrightarrow$$
$$-4 \le 3 \arccos\left(\frac{x}{3} + \frac{5\pi}{7}\right) - 4 \le 3\pi - 4$$

So , that's it  $E(y) = [-4; 3\pi - 4]$  the fact that come comes out

**Example 4.3.**  $y = 2x^4 - 3x^2 + 6$  function even-odd check

## **Solution :**

function even-odd check for (-x) at the point function is considered.

$$f(-x) = 2 \cdot (-x)^{4} - 3 \cdot (-x)^{2} + 6 = 2x^{4} - 3x^{2} + 6 = f(x)$$

So, it is given function f(-x) = f(x) condition satisfies. From this y of the function couple the fact that known will be

**Example 4.4.**  $y = 2 \sin 4x$  of the function the most small period define

#### Solution :

Periodic of the function definition according to every how x and  $T \neq 0$  for y(x+T) = y(x).

 $f(x) = 2\sin 4x$  for :

$$2\sin(4(x+T)) = 2\sin 4x$$
 Of  $\sin(4x+4T) - \sin 4x = 0$ ,

From this

$$2\sin\frac{4x+4T-4x}{2} \cdot \cos\frac{4x+4T+4x}{2} = 0$$

will be That is  $\sin 2T \cdot \cos(4x + 2T) = 0$ .

Received equality every how x for action does That is , if x the own into didn't get part to zero equal to if , that is  $\sin 2T = 0$  that it was for the most small period  $T = \frac{\pi}{2}$ will be

**Example 4.5.**  $y = -2x^2 + 4x$  function graph draw

#### Solution :

Given function square function because it was , his graph to be a parabola clearly Now this of the parabola  $o_x$  axis cut passing points to determine need will be Of this for this square function to 0 equal to solve need :

$$-2x^{2} + 4x = 0;$$
$$x(-2x+4) = 0;$$

In this every one bracket to 0 equating to the following the solution get can :

$$x = 0$$
 and  $-2x + 4 = 0$ ;  
 $x_1 = 0; \quad x_2 = 2$ 

Now the tip of the parabola is determined . In this  $y = ax^2 + bx + c$  square the tip of the parabola in the function to find from the formula

$$x_0 = -\frac{b}{2a} \Rightarrow x_0 = -\frac{4}{2 \cdot (-2)};$$
  
 $x_0 = 1 \text{ and } y_0 = -2 \cdot 1^2 + 4 \cdot 1 = 2$ 

the fact that come comes out This found  $o_x$  axis cut passing (0,0);(2,0) points and the tip of the parabola calculated (1,2) point through given function graph is made (Fig. 4.1):



Figure 4.1

# Independent work for issues

**4.1** The following f(x) function given let it be This function for f(5), f(-1), f(1/2) s count

$$f(x) = \begin{cases} x^{2} + 1, & agar \quad x > 0 \\ -4, & agar \quad x = 0 \\ 1 - 2x, & agar \quad x < 0 \end{cases}$$

Given y of the function identification field D(y) find the (4.2-4.9).

4.2 
$$y = \frac{x-1}{(x+2)(x-3)};$$
  
4.3  $y = \sqrt{\frac{x}{x-2}};$   
4.4  $y = \frac{x}{\sqrt[4]{25-x^2}};$   
4.5  $y = \frac{3^{\sqrt{x}}}{\lg(3-x)};$   
4.6  $y = \sqrt{x+2} - \ln(4-x);$   
4.7  $y = \frac{\sqrt{1-x^2} \cdot \ln(x+1)}{(x^2+1)\sqrt{5^x}} - \frac{\sqrt[4]{x-1}}{x};$   
4.8  $y = \frac{\sqrt{4-x^2}}{arctgx} + \log_2(x-2);$   
4.9  $y = \frac{\arcsin x}{\sin 5x};$ 

**4.10** The following of functions identification field D(y) and values field E(y) find the

$$a \quad y = \frac{1}{x})$$
$$b) \quad y = x^{2}$$

Given y of the function values field E(y) find the (4.11-4.13).

4.11 
$$y = \frac{2\sqrt{2x}-1}{x^2+1};$$
  
4.12  $y = 6 \sin x - 8 \cos x;$   
4.13  $y = 2 \cdot 5^{-2x^2};$ 

Given y function even-odd check (4.14-4.20).

4.14  $y = (x-5)^{2} + 3;$ 4.15  $y = \frac{\sin x}{x^{3}};$ 4.16  $y = (\sin^{2} x + \cos x) \cdot x^{3};$ 4.17  $y = x^{2} \ln x;$ 4.18  $y = 3^{4x} \cdot x^{2} + \cos x;$ 

**4.19** 
$$y = \frac{tgx}{x^4 + x^2 + x}$$
;

**4.20** 
$$y = \frac{x^4}{\sin x} - x^3 \ln(1 + x^2);$$

**4.21**  $y = x - e^{2x}$  function to monotony check

Given y of the function the most small find the period (4.22-4.24).

- **4.22**  $y = \sin^2 4x$ ;
- **4.23**  $y = 2\sin\frac{x}{2}$ ;
- **4.24**  $y = tg^2 x$ ;
- **4.25**  $y = \ln x + 2$  and  $y = x^2 + x 6$  function draw

#### Answers

| 4.1.  | $f(5) = 26, f(-1) = 3, f\left(\frac{1}{2}\right) = 1\frac{1}{4}$                                                                                                       |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.2.  | $D(y) = \{x \in R : x \neq -2  \text{va } x \neq 3\}$                                                                                                                  |
| 4.3.  | $D(y) = \{x \in R : x > 2\}$                                                                                                                                           |
| 4.4.  | $D(y) = \{x \in R : -5 < x < 5\}$                                                                                                                                      |
| 4.5.  | $D(y) = \{x \in R : 0 \le x < 2 \ \text{va} \ 2 < x < 3\}$                                                                                                             |
| 4.6.  | $D(y) = \{x \in R : -2 \le x < 4\}$                                                                                                                                    |
| 4.7.  | $D(y) = \{x \in R : x = 1\}$                                                                                                                                           |
| 4.8.  | Ø                                                                                                                                                                      |
| 4.9.  | $D(y) = \left\{ x \in R : -1 \le x < -\frac{\pi}{5}  \text{va}  -\frac{\pi}{5} < x < 0  \text{va}  0 < x < \frac{\pi}{5}  \text{va}  \frac{\pi}{5} < x \le 1 \right\}$ |
| 4.10. | $a)D(y) = \{x \in R : x \neq 0\}, E(y) = \{y \in R : y \neq 0\}, b)D(y) = \{x \in R\}, E(y) = \{y \in R : y \ge 0\}$                                                   |

- **4.11.**  $E(y) = \{ y \in R : -1 \le y \le 0.933638 \}$
- **4.12.**  $E(y) = \{ y \in R : -10 \le y \le 10 \}$
- **4.13.**  $E(y) = \{ y \in R : 0 < y \le 2 \}$
- **4.14.** Function neither even nor odd
- 4.15. Couple function
- 4.16. Odd function
- **4.17.** Function neither even nor odd
- **4.18.** Function neither even nor odd
- **4.19.** Function neither even nor odd
- **4.20.** Odd function

**4.21.** 
$$\left(-\infty; \frac{\ln\left(\frac{1}{2}\right)}{2}\right)$$
 in between growing  $\left(\frac{\ln\left(\frac{1}{2}\right)}{2};\infty\right)$  in between decreasing

**4.22.**  $T = \frac{\pi}{4}$ **4.23.**  $T = 4\pi$ 

# **4.24.** $T = \pi$

**4.25.** Functions graph as follows will be :



