Real time task scheduling

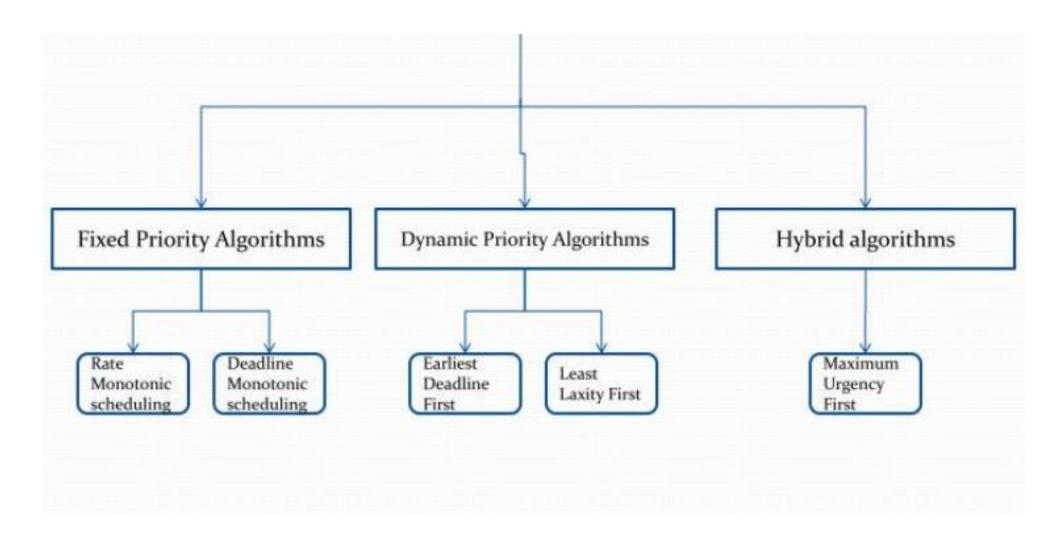
Outline

- Real time system
- Scheduling periodic tasks
- Real time Scheduling algorithms
- references

Real Time System

- Real time systems have been defined as: "those systems in which the correctness of the system depends not only on the logical result of the computation, but also on the time at which the results are produced"
- Correct function at correct time
- Usually embedded
- Types
 - Hard real-time systems
 - Soft real-time systems

Real Time System


 Soft real-time systems: meet timing constraints most of the time, it is not necessary that every time constraint be met. Some deadline miss is tolerated

 Hard real-time systems: meet all timeconstraints exactly, every resource management system must work in the correct order to meet time constraints. No deadline miss is allowed.

Task categories

- Invocation
 - Periodic (time triggered)
 - Aperiodic (event triggered)
- Creation
 - Static
 - Dynamic
- Multi-Tasking system
 - Preemptive: higher priority process taking control of the processor from a lower priority
 - Non-Preemptive: each task can control the CPU for as long as it needs it

Scheduling algorithms

Rate monotonic scheduling

- Priority assignment based on rates of tasks
- Higher rate task assigned higher priority
- Schedulable utilization U_r

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} \le n(\sqrt[n]{2} - 1)$$

- if U > U_r schedulability is guaranteed
- Tasks may be schedulable even if U < U_r

Rate monotonic sheduling example

Process	Execution Time	Period
P1	1	8
P ₂	2	5
P3	2	10

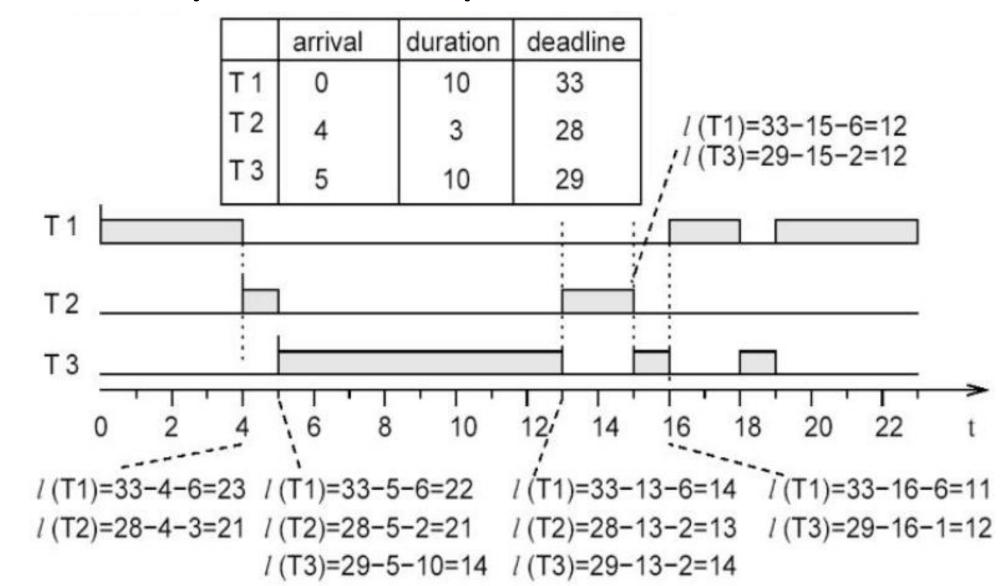
The utilization will be:

$$\frac{1}{8} + \frac{2}{5} + \frac{2}{10} = 0.725$$

The theoretical limit for processes, under which we can conclude that the system is schedulable is:

$$U = 3(2^{\frac{1}{3}} - 1) = 0.77976\dots$$

Since 0.725 < 0.77976... the system is schedulable!


Earliset deadline first

- Dynamic priority scheduling
- Priorities are assigned according to deadlines:
 - earlier deadline, higher priority
 - later deadline, lower priority
- The first and the most effectively widely used dynamic priority-driven scheduling algorithm
- Effective for both preemptive and non-preemptive scheduling

Least Laxity First Cont

- LLF considers the execution time of task, which EDF does not
- LLF assigns higher priority to a task with the least laxity
- A task with zero laxity must be scheduled right away and executed without preemption or it will fail to meet its deadline
- The negative laxity indicates that the task will miss the deadline, no matter when it is picked up for execution

Least Laxity First Example

References

- https://en.wikipedia.org/wiki/Realtime_operating_system#Scheduling
- https://en.wikipedia.org/wiki/Rate-monotonic_scheduling
- https://barrgroup.com/Publications/Glossary/RMA.php