
Programming Languages for

Real-Time Systems

Contents

 Introduction

 Landscape

 Ada 95

 Real-Time Java

 Real-Time C

 Real-Time POSIX

 Without C++ ???

 Conclusion

Introduction
The real-time and embedded systems market is
huge and growing all the time. It has been
estimated that 100 times more processors are
destined for embedded systems rather than the
desktop. Embedded real-time systems :

• are mainly small (for example, mobile
phones) but can also be extremely large and
complex (for example air traffic control
systems)

• have potentially complex mathematical
models of their controlled environment

• must be dependable

• are inherently concurrent

• must interact within the time frame of the
environment

• must interact with low-level mechanisms such
as hardware devices and memory
management faculties.

Landscape

 Rather than consider all possibly real-time programming languages, this

section focuses mainly on three representatives groups of the landscape:

C/C++ based languages, Ada and Real-Time Java (in particular the Real-

Time Specification for Java). Sequential languages such as C and C++ are

not reviewed in their own right as (a) their advantages and disadvantages

are well known (for a full discussion) (b) they do not support the main

characteristics of embedded real-time systems and consequently (c) their

use requires direct interaction with the facilities of an underlying operating

system .

Ada 95

 The development of the Ada programming language forms a unique and,

at times, intriguing contribution to the history of computer languages. As all

users of Ada must know, the original language design was a result of

competition between a number of organizations, each of which attempted

to give a complete language definition in response to a series of

requirements documents. This gave rise to Ada 83. Following ten years of

use, Ada was subject to a complete overhaul. Object-oriented

programming features were added (through type extensibility rather than

via the usual class model), better support for programming in the large was

provided (via child packages) and the support for real-time and distributed

programming was enhanced. The resulting language, Ada 95, is defined by

an international ISO standard.

Real-Time Java

 Since its inception in the early 1990s, there is little doubt that Java has been
a great success. The Java environment provides attributes that make it a
powerful platform to develop embedded real-time applications. Since
embedded systems normally have limited memory, an advantage that
some versions of Java (for instance J2ME) present is the small size of both
the Java runtime environment and the Java application programs.
Dynamic loading of classes also facilitates the dynamic evolution of the
applications. Additionally, the Java platform provides classes for building
multithreaded applications and automatic garbage collection; these make
it an attractive environment to develop embedded real-time applications.
Unfortunately, the problem with garbage collection is that it introduces
random pauses in the execution of applications. Consequently, Java does
not guarantee determinism nor bounded resource usage, which are
needed in embedded real-time systems.

Real-Time C

Real-Time Concurrent C

extends Concurrent C by

providing facilities to specify

periodicity or deadline

constraints, to seek

guarantees that timing

constraints will be met, and to

perform alternative actions

when either the timing

constraints cannot be met or

the guarantees are not

available

Real-Time POSIX.

POSIX (Portable Operating System

Interface) is a set of standard

operating system interfaces based on

the Unix operating system. The most

recent POSIX specifications -- IEEE

Std 1003.1-2017 -- defines a

standard interface and environment

that can be used by an operating

system (OS) to provide access to

POSIX-compliant applications. The

standard also defines a command

interpreter (shell) and

common utility programs. POSIX

supports application portability at

the source code level so applications

can be built to run on any POSIX-

compliant OS.

https://www.techtarget.com/whatis/definition/interface
https://www.techtarget.com/searchdatacenter/definition/Unix
https://www.techtarget.com/whatis/definition/operating-system-OS
https://www.techtarget.com/searchdatacenter/definition/shell
https://www.techtarget.com/whatis/definition/utility
https://www.techtarget.com/searchstorage/definition/portability
https://www.techtarget.com/searchapparchitecture/definition/source-code

Without C++ ???

Of course C++

•Operating Systems. C++ is a fast

and strongly-typed programming

language which makes it an ideal

choice for developing operating

systems. ...

•Games. ...

•GUI Based Applications. ...

•Web Browsers. ...

•Embedded Systems. ...

•Banking Applications. ...

•Compilers. ...

•Database Management Software.

Conclusion

The book covers use of Ada 95, the Java Real-Time System and realtime POSIX extensions (programmed in C).
None of these is directly a domain specific language.

Ada 95 is a programming language commonly used in the late 90s and (AFAIK) still widely used for realtime
programming in defence and aerospace industries. There is at least one DSL built on top of Ada - SparkAda -
which is a system of annotations which describe system characteristics to a program verification tool.

This interview of April 6, 2006 indicates some of the classes and virtual machine changes which make up the
Java Real-Time System. It doesn't mention any domain specific language extensions. I haven't come across
use of Java in real-time systems, but I haven't been looking at the sorts of systems where I'd expect to find it (I
work in aerospace simulation, where it's C++, Fortran and occasionally Ada for real-time in-the-loop systems).

Realtime POSIX is a set of extensions to the POSIX operating system facilities. As OS extensions, they don't
require anything specific in the language. That said, I can think of one C based DSL for describing embedded
systems - SystemC - but I've no idea if it's also used to generate the embedded systems.

Not mentioned in the book is Matlab, which in the last few years has gone from a simulation tool to a model
driven development system for realtime systems. Matlab/Simulink is, in effect, a DSL for linear programming,
state machines and algorithms. Matlab can generate C or HDL for realtime and embedded systems. It's very
rare to see an avionics, EW or other defence industry real-time job advertised which doesn't require some
Matlab experience. (I don't work for Matlab, but it's hard to over emphasis how ubiquitous it really is in the
industry)

http://www.praxis-his.com/sparkada/
http://www.oracle.com/technetwork/articles/javase/bollella-qa2-135140.html
http://www.unix.org/version2/whatsnew/realtime.html
http://en.wikipedia.org/wiki/SystemC
http://www.mathworks.com/
http://www.mathworks.com/products/rtw/
http://www.mathworks.com/products/slhdlcoder/?s_cid=HP_FP_SL_HDLCoder

