Topic 6.

The opposite function . Function continuity . Unlimited small functions

Definition 6.1. If $y = f(x), x \in X, y \in Y$ function his own every one value one times acceptance if he does, that is every one $y \in Y$ for the only one $x \in X$ there is if , then $y = f(x), x \in X, y \in Y$ function reversible is called

Definition 6.2. Function reversible if , then *x* the collection *y* to the collection reflective y = f(x) to the function *y* the collection *x* to the collection reflective y = g(x) function suitable put can , in this y = g(f(x)). This is a function f(x) to the function reverse is called and $f^{-1}(y)$ such as is determined .

Unlimited small functions

okay $\alpha(x)$ and $\beta(x) \quad x \to x_0$ when striving $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = A$ let it be Unlimited small functions comparison for of the following used :

1) If $A \neq \infty$ and $A \neq 0$ if $\alpha(x)$ and $\beta(x)$ the first in order infinite small functions is called ;

2) If A = 1 if, then $\alpha(x)$ and $\beta(x)$ equivalent infinite small functions is called That is, $x \to x_0$ when striving $\alpha(x) \sim \beta(x)$;

3) If A = 0 if , then $\alpha(x)$ function $\beta(x)$ to relatively high in order infinite small is called a function. That is $x \to x_0$ when striving $\alpha(x) = o(\beta(x))$;

4) If $A = \infty$ if , then $\alpha(x)$ function $\beta(x)$ to relatively lower in order infinite small is called a function. That is $x \to x_0$ when striving $\beta(x) = o(\alpha(x))$;

5) If $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$ there is a limit if not, then $\alpha(x)$ and $\beta(x)$ functions incomparable functions will be

6) If
$$\lim_{x \to x_0} \frac{\alpha(x)}{(\beta(x))^k} = A$$
, $0 < |A| < \infty$ if $\alpha(x)$ function $x \to x_0$ when striving $\beta(x)$

with in comparison k in order infinite small function will be

Function continuity

y = f(x) function x_0 at the point continuously is called , if

- 1) SHE IS x_0 point and his small around determined if
- 2) y = f(x) of the function x_0 at the point limit there is if
- 3) of the function x_0 limit value at the point $\lim_{x \to x_0} f(x) = f(x_0)$ to equal to if

If $x \to x_0$ when striving $x > x_0$ if $\lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$ right is called side limit and $\lim_{x \to x_0+0} f(x)$ is written as If $x \to x_0$ when striving $x < x_0$ is called the left $\liminf_{\substack{x \to x_0 \\ x < x_0}} f(x)$ and $\lim_{x \to x_0-0} f(x)$ is written as

Left and right bilaterally limits both of them **one bilaterally limits** is $\lim_{x \to x_0} f(x) = A \text{ called to be for } \lim_{x \to x_0-0} f(x) = \lim_{x \to x_0+0} f(x) = A \text{ to be enough and necessary }.$

of the function at the point continuity meaning as follows is represented by :

$$f(x_0) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0 \to 0} f(x) = \lim_{x \to x_0 \to 0} f(x)$$

If x_0 point of the function continuity disruptive if so, this x_0 point of the function **interruption point** is called

Okay x_0 - of the function interruption point let it be If this point for one bilaterally limits there is if , then x_0 point **Type I interruption** is called a **point** .

If $f(x_0)$ there is if not, that is one bilaterally from limits at least one $x \to x_0$ when striving ∞ to equal to if, then x_0 point **Type II interruption** is called a **point.**

Solved from examples samples

Example 6.1. function to continuity check :
$$f(x) = \begin{cases} x+2, & x<-2\\ \frac{x^2-4}{2}, & -2 \le x<0;\\ \sin x, & x \ge 0. \end{cases}$$

Solution :

Function numbers read on all in value determined and $(-\infty;-2),(-2;0),(0;+\infty)$ in the interval continuously. Because elementary functions with expressed. Function x = -2 and x = 0 at the points they are studied through of the function analytical specification will change.

If
$$x = -2$$
 if, then $f(-2) = \frac{(-2)^2 - 4}{2} = 0$ will be

Now one sided limits defined as :

$$\lim_{x \to -2-0} (x+2) = 0; \qquad \lim_{x \to -2+0} \left(\frac{x^2 - 4}{2}\right) = 0;$$

In this, $\lim_{x \to -2-0} f(x) = \lim_{x \to -2+0} f(x) = f(-2) = 0$. So, x = -2 - at the point function continuously.

If x = 0 if, then $f(0) = \sin 0 = 0$ will be

Now one sided limits defined as :

$$\lim_{x \to 0^{-0}} \left(\frac{x^2 - 4}{2} \right) = -2; \qquad \lim_{x \to 0^{+0}} \sin x = 0;$$

In this $\lim_{x \to 0^{-0}} f(x) \neq \lim_{x \to 0^{+0}} f(x) = f(0)$. So $x = 0^{-1}$ of the function $\omega = \left| \lim_{x \to x_0^{-0}} f(x) - \lim_{x \to x_0^{+0}} f(x) \right| = \left| -2 - 0 \right| = 2$ jump with the first kind of interruption point is considered

 $\lim_{x \to 0+0} f(x) = f(x)$ that it was for f(x) function x = 0 at the point right by continuously will be

As a result, the function $R / \{0\}$ when continuously will be , in this x = 0 – first type interruption point

6. Example 2. Given functions 1st order eng small functions to be prove it

$$\alpha(x) = x^2 - 1, \ \beta(x) = x - 1, \ x \to 1.$$

Solution :

 $\alpha(x) = x^2 - 1, \beta(x) = x - 1$ functions $x \to 1$ when striving

$$\lim_{x \to 1} \alpha(x) = \lim_{x \to 1} (x^2 - 1) = 1^2 - 1 = 0;$$
$$\lim_{x \to 1} \beta(x) = \lim_{x \to 1} (x - 1) = 1 - 1 = 0$$

infinite small functions that to see can Now their $x \rightarrow 1$ when ratio will be studied :

$$\lim_{x \to 1} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} =$$
$$= \lim_{x \to 1} (x + 1) = 1 + 1 = 2.$$

So, the limit value is 0 and ∞ from different has been the value acceptance does From this $\alpha(x)$ function $x \to 1$ when $\beta(x)$ to the function relatively the first in order infinite small function the fact that known will be

Example 6.3. $x \to -1$ to when striving y = x+1 of the function $\beta(x) = (x+1)^2$ to the function relatively smallness order define

Solution :

In this,

$$\alpha(x) = x+1 \text{ function}\left(\lim_{x \to -1} \alpha(x) = \lim_{x \to -1} (x+1) = -1+1 = 0\right)$$

from the fact that x = -1 at the point infinite small function that to see can $\beta(x) = (x+1)^2$ function too

$$\left(\lim_{x \to -1} \beta(x) = \lim_{x \to -1} (x+1)^2 = (-1+1)^2 = 0\right)$$

from being his x = -1 at the point infinite small function the fact that known will be them to compare for the following calculations is executed :

$$\lim_{x \to -1} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to -1} \frac{x+1}{(x+1)^2} = \lim_{x \to -1} \frac{1}{x+1} = \frac{1}{0} = \infty$$

From this $\alpha(x)$ function $x \to -1$ when $\beta(x)$ to the function relatively lower in order infinite small function the fact that known will be

Example 6.4. Unlimited small functions compare :

$$\alpha(x) = \left(x^2 - 1\right)^2, \qquad \beta(x) = x - 1, \qquad x \to 1.$$

Solution :

 $\alpha(x) = (x^2 - 1)^2$ function

$$\left(\lim_{x\to 1}\alpha(x) = \lim_{x\to 1}\left(x^2 - 1\right)^2 = 0\right)$$

from the fact that x = 1 at the point infinite small function that to see can $\beta(x) = x - 1$ function too

$$\left(\lim_{x \to 1} \beta(x) = \lim_{x \to 1} (x-1) = 0\right)$$

from being his x = 1 at the point infinite small function the fact that known will be them to compare for the following calculations is executed :

$$\lim_{x \to 1} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to 1} \frac{\left(x^2 - 1\right)^2}{x - 1} = \lim_{x \to 1} \frac{\left(x - 1\right)^2 \left(x + 1\right)^2}{x - 1} =$$
$$\lim_{x \to 1} \left(x - 1\right) \left(x + 1\right)^2 = 0 \cdot 2 = 0$$

From this $\alpha(x)$ function $x \to 1$ at the point $\beta(x)$ to the function relatively high in order infinite small function the fact that known will be

6. Example 5. Given y to the function $f^{-1}(x)$ reverse function define : $y = -\frac{1}{2}x + 7$, $2 \le x \le 9$.

Solution :

Given function argument for and his value replaced by :

$$x = -\frac{1}{2}y + 7;$$

$$y = 2 \cdot (-x + 7) = -2x + 14;$$

In this this function argument the following condition satisfaction need :

$$2 \le y \le 9 \Longrightarrow$$
$$2 \le -2x + 14 \le 9 \Longrightarrow$$
$$-12 \le -2x \le -5 \Longrightarrow$$
$$6 \ge x \ge 2,5$$

So, it is given of the function reverse function $f^{-1}(x) = -2x + 14$, $(2, 5 \le x \le 6)$ will be

Independent work for issues

Given f(x) function x_0 at the point to continuity check (6.1-6.4).

6.1
$$x_0 = 1, f(x) = \frac{1 - x^2}{1 + x^2};$$

6.2
$$x_0 = 0, f(x) = \begin{cases} \frac{1 - \cos x}{x^2}, & x \neq 0; \\ 3, & x = 0. \end{cases}$$

6.3
$$x_0 = 1, \quad f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1; \\ 2, & x = 1. \end{cases}$$

6.4
$$x_0 = 0, \ f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

6.5 f(x) function $x_0 = 0$ at the point continuously has been *A* of find the value of

$$f(x) = \begin{cases} \frac{\sin 8x - x}{3x + \sin 4x}, & x > 0; \\ A\cos x, & x \le 0. \end{cases}$$

6.6 f(x) function $x_0 = 0$ at the point continuously has been *A* of find the value of

$$f(x) = \begin{cases} \frac{1 - \cos x}{x^2}, & x \neq 0; \\ A, & x = 0. \end{cases}$$

6.7 Given function continuity check : $y = \frac{x-4}{|x|}$;

6.8 Given function continuity check : $y = 1 + 2^{\frac{1}{1-x}}$;

6.9 Given function continuity check : $y = \frac{1}{x^2 - 4}$;

Given *y* to the function reverse function define (6.10-6.24):

- 6.10 y = 3x + 2;6.11 y = -5x - 7;6.12 y = 12x - 3;6.13 y = -8x + 16;6.14 $y = \frac{2}{3}x - 5;$ 6.15 $y = -\frac{3}{4}x + 5;$ 6.16 $y = -\frac{5}{8}x + 10;$ 6.17 $y = \frac{1}{2}x + 8;$ 6.18 $y = x^2 + 5;$
- **6.19** $y = x^2 4$;
- **6.20** $y = (x+3)^2$;
- **6.21** $y = (x-6)^2$;
- **6.22** $y = \sqrt{x-2}, y \ge 0$;

6.23 $y = \sqrt{x+5}, y \ge 0$; **6.24** $y = \sqrt{x+8}, y \ge 8;$

Given f(x) to the function g(x) function reverse to be check (6.25-6.30).

6.25
$$f(x) = x + 6, g(x) = x - 6$$
;

- **6.26** $f(x) = 5x + 2, g(x) = \frac{x-2}{5};$
- **6.27** $f(x) = 3x 9, g(x) = \frac{1}{3}x 3;$
- **6.28** $f(x) = 2x 7, g(x) = \frac{x+7}{2};$
- **6.29** $f(x) = -4x + 8, g(x) = -\frac{1}{4}x + 2;$
- **6.30** $f(x) = \frac{1}{2}x 7, g(x) = 2x + 14;$

 $x \rightarrow 0$ to when striving of functions y = x to the function relatively smallness procedures define (6.31-6.36):

6.31 $\frac{2x}{x+1}$; 6.32 $\sqrt{x+\sqrt{x}}$; 6.33 $\sqrt[3]{x^2} - \sqrt{x^3}$; 6.34 $y = 1 - \cos x$; 6.35 $y = tgx - \sin x$; 6.36 $\frac{7x^8}{x^4+1}$;

Unlimited small functions Compare (6.37-6.43):

6.37 $\alpha(x) = \frac{3x^4 - 4}{x + 1}, \qquad \beta(x) = x^3, \qquad x \to 0$ **6.38** $\alpha(x) = \frac{1 - x}{x + 1}, \qquad \beta(x) = 1 - \sqrt[3]{x}, \qquad x \to 1;$ **6.39** $\alpha(x) = \sqrt[3]{x^4 + 2x^3}, \qquad \beta(x) = \ln(1 + x), \qquad x \to 0;$ **6.40** $\alpha(x) = 1 - \cos^3 x, \qquad \beta(x) = \sin^2 x, \qquad x \to 0;$ **6.41** $\alpha(x) = \frac{x+1}{x^2+1}, \qquad \beta(x) = \frac{1}{x}, \qquad x \to 0;$ **6.42** $\alpha(x) = \frac{\arctan x}{x^2+1}, \qquad \beta(x) = \frac{1}{x^2}, \qquad x \to \infty;$ **6.43** $\alpha(x) = 1 + \sin^3 x, \qquad \beta(x) = \cos^2 x, \qquad x \to \frac{\pi}{2}$

Given functions 1st order eng small functions to be prove (6.44-6.45):

6.44
$$f(x) = tgx \ va \ \varphi(x) = \arcsin x, \qquad x \to 0;$$

6.45
$$f(x) = 1 - \cos x \ va \ \varphi(x) = 3x^2, \qquad x \to 0$$

Answers

- **6.1.** At the point continuously
- **6.2.** To interrupt have
- **6.3.** At the point continuously
- **6.4.** At the point continuously

6.5.
$$A = 1$$

6.6.
$$A = \frac{1}{2}$$

- **6.7.** x = 0 at the point to disconnect have
- **6.8.** x = 1 at the point to disconnect have
- **6.9.** x = -2 and x = 2 at points to disconnect have
- **6.10.** $f^{-1}(x) = \frac{x-2}{3}$ **6.11.** $f^{-1}(x) = -\frac{x+7}{3}$ **6.12.** $f^{-1}(x) = \frac{x+3}{12}$ **6.13.** $f^{-1}(x) = -\frac{x}{2} + 2$ **6.14.** $f^{-1}(x) = \frac{3x+15}{2}$ **6.15.** $f^{-1}(x) = \frac{20-4x}{3}$ **6.16.** $f^{-1}(x) = 16 - \frac{8x}{5}$ **6.17.** $f^{-1}(x) = 2x - 16$ **6.18.** $f^{-1}(x) = \pm \sqrt{x-5}$ **6.19.** $f^{-1}(x) = \pm \sqrt{x+4}$ **6.20.** $f^{-1}(x) = \pm \sqrt{x} - 3$ **6.21.** $f^{-1}(x) = \sqrt{x} \pm 6$ **6.22.** $f^{-1}(x) = x^2 + 2$

- **6.23.** $f^{-1}(x) = x^2 5, x \in (-\infty; -\sqrt{5}) \cup (\sqrt{5}; \infty)$ **6.24.** $f^{-1}(x) = x^2 - 8, x \in (-\infty; -4) \cup (4; \infty)$
- 6.25. Functions to each other reverse will be
- 6.26. Functions to each other reverse will be
- 6.27. Functions to each other reverse it's not
- 6.28. Functions to each other reverse will be
- **6.29.** Functions to each other reverse will be
- **6.30.** Functions to each other reverse will be
- 6.31. First in order infinite small functions
- **6.32.** Incomparable functions
- **6.33.** $k = \frac{2}{3}$ good infinite small function
- 6.34. High in order
- 6.35. High in order
- 6.36. High in order
- **6.37.** $\alpha(x)$ and $\beta(x)$ incomparable functions
- **6.38.** $\alpha(x)$ and $\beta(x)$ the first in order infinite small functions
- **6.39.** $\alpha(x)$ and $\beta(x)$ incomparable functions
- **6.40.** $\alpha(x)$ and $\beta(x)$ the first in order infinite small functions
- **6.41.** $\alpha(x)$ function $\beta(x)$ to relatively high in order infinite small function
- **6.42.** $\alpha(x)$ and $\beta(x)$ the first in order infinite small functions
- **6.43.** $\alpha(x)$ function $\beta(x)$ to relatively lower in order infinite k is internal function