Signal processing

What is Signal??

Ans: Any physical phenomenon that carries or convey information from one place to other and represents as a function of independent variables such as time, distance, etc.

SIGNALS

- Analog signals
- Discrete signals
- Digital signals

Process

- Discretization
- Quantization

Jean Baptiste Joseph Fourier (1768-1830)

- Had crazy idea (1807):
- **Any** periodic function can be rewritten as a weighted sum of Sines and Cosines of different frequencies.
- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!
- But it's true!
 - called Fourier Series
 - Possibly the greatest tool used in Engineering

A Sum of Sinusoids

• Our building block:

 $A\sin(\omega x + \phi)$

- Add enough of them to get any signal *f*(*x*) you want!
- How many degrees of freedom?
- What does each control?
- Which one encodes the coarse vs. fine structure of the signal?

Time and Frequency

• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$

Time and Frequency

• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$

Frequency Spectra

• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$

Frequency Spectra

Frequency Spectra

Fourier Transform – more formally

Represent the signal as an infinite weighted sum of an infinite number of sinusoids

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi ux} dx$$

Note:
$$e^{ik} = \cos k + i \sin k$$
 $i = \sqrt{-1}$

Arbitrary function \longrightarrow Single Analytic ExpressionSpatial Domain (x) \longrightarrow Frequency Domain (u)
(Frequency Spectrum F(u))

Inverse Fourier Transform (IFT)

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{i 2 \pi u x} dx$$

Fourier Transform

• Also, defined as:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-iux} dx$$

Note: $e^{ik} = \cos k + i \sin k$ $i = \sqrt{-1}$

• Inverse Fourier Transform (IFT)

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(u) e^{iux} dx$$