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Abstract: Pneumonia is a form of acute respiratory infection affecting the lungs. Symptoms of viral
and bacterial pneumonia are similar. Rapid diagnosis of the disease is difficult, since polymerase
chain reaction-based methods, which have the greatest reliability, provide results in a few hours, while
ensuring high requirements for compliance with the analysis technology and professionalism of the
personnel. This study proposed a Concatenated CNN model for pneumonia detection combined with
a fuzzy logic-based image improvement method. The fuzzy logic-based image enhancement process
is based on a new fuzzification refinement algorithm, with significantly improved image quality
and feature extraction for the CCNN model. Four datasets, original and upgraded images utilizing
fuzzy entropy, standard deviation, and histogram equalization, were utilized to train the algorithm.
The CCNN’s performance was demonstrated to be significantly improved by the upgraded datasets,
with the fuzzy entropy-added dataset producing the best results. The suggested CCNN attained
remarkable classification metrics, including 98.9% accuracy, 99.3% precision, 99.8% F1-score, and
99.6% recall. Experimental comparisons showed that the fuzzy logic-based enhancement worked
significantly better than traditional image enhancement methods, resulting in higher diagnostic preci-
sion. This study demonstrates how well deep learning models and sophisticated image enhancement
techniques work together to analyze medical images.

Keywords: pneumonia detection; concatenated CNN; image enhancement; chest X-ray image

1. Introduction

Pneumonia is a pathological process in the lungs, inflammation of the lung tissue.
Many pathogens cause pneumonia: various viruses, bacteria, and fungi. As a result of the
inflammatory process and the immune response, the normal functioning of the lungs is
disrupted. Due to impaired gas exchange, the general condition of the body is suppressed,
which can lead to death. Particularly dangerous is so-called atypical pneumonia, in which
typical symptoms are expressed much less, and secondary symptoms prevail—sore throat,
muscles, headache, and general weakness. It was atypical pneumonia, whose causative
agent was the SARS-CoV-2 coronavirus, that was the main cause of death during the global
pandemic that began in 2019. At the first stage of diagnosing respiratory diseases, the
doctor must solve the problem of distinguishing between “normal” and “pneumonia”. In
order to achieve this, the patient is put through radiation diagnostics, and radiography
data are initially used to fix the issue.
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Pneumonia has always been a hazardous disease, but after the emergence of the
COVID-19 virus, the problem of its detection has moved to a new level. After all, if this
disease is neglected and detected at a late stage, the consequences for human health or even
life can be unpredictable. Tomography, X-ray, spirograph, bronchoscope, and other instru-
ments are used to detect pneumonia, but X-ray is the most accessible of them; radiography
is a quick way to detect pulmonary diseases in patients. The signs of pulmonary diseases
are not always easy to detect and because of this, the analysis of only X-ray images can take
a long time. Furthermore, because of COVID-19, the number of patients has grown, which
has increased the strain on doctors. In order to promptly diagnose patients, they now need
to review a vast amount of study data. This is time-consuming and can lead to errors, so to
solve these problems, neural networks can be used to diagnose patients. Convolutional
neural networks are the best tool for diagnosing diseases from medical images [1,2]. The
main problems of using neural networks are increasing the accuracy and generalizing
ability of networks, i.e., their ability to show high results not only on the data on which
the network was trained but also on new data. The study aims to develop a CNN model
for diagnosing pneumonia from X-ray images which has high accuracy and generalization
ability.

In response to the limitations of traditional image enhancement techniques and CNN
models, this study introduces a novel hybrid approach that combines fuzzy logic-based
image enhancement with a multi-branch Concatenated CNN (CCNN) architecture. This
combination significantly improves classification accuracy, precision, and robustness, par-
ticularly in medical imaging scenarios with variable image quality

The main contributions of our research are enumerated in the following list:

• Two neural network models are proposed for pneumonia detection: a traditional CNN
and a novel Concatenated CNN (CCNN), trained on large-scale chest X-ray datasets
comprising 5856 and 17,568 images, respectively. The CCNN leverages multiple image
enhancement techniques for superior diagnostic performance;

• A novel fuzzy enhancement model is developed to significantly improve image quality
during pre-processing. This method optimizes image contrast and highlights fine-
grained details, making the diagnostic process more accurate and reliable;

• The quality of both the enhanced and original datasets is rigorously evaluated using
the BRISQUE algorithm, providing a comprehensive comparison of image quality
improvements;

• The performance of the proposed models is extensively compared against state-of-
the-art architectures, including MobileNetV2, LSTM-CNN, AlexNet, ResNet-50, Mo-
bileNet, and VGG-19. This comparison is based on key metrics such as accuracy,
precision, recall, F1-score, and AUC, demonstrating the superior effectiveness of our
approach.

The following are the remaining sections of the paper: the relevant work is displayed
in Section 2, the proposed image enhancement approach and CNN models are presented
in Section 3, the experiments, results, and discussion are detailed in Section 4, and the
conclusions are described in Section 5.

2. Related Works

Chest radiography has several benefits for detecting pneumonia, but one drawback
is the shortage of qualified radiologists who can analyze the data, depict it for screening,
and determine the illness’s severity. Thus, the creation and application of automated
clinical decision support systems can greatly enhance the treatment of numerous patients
by helping radiologists expedite the viewing and interpretation of data [3,4]. Artificial
intelligence and deep learning are currently the most advanced methods for analyzing
big data in almost all fields. Artificial intelligence-based computer systems have shown
significant advances in the field of healthcare, and their use will significantly reduce the
time to identify patients infected with the lung virus [5].



Sensors 2024, 24, 6750 3 of 23

Currently, there is extensive research to identify an accurate and robust deep-learning
model for pneumonia detection and classification. Researchers classify chest X-rays and CT
scans of patients using various deep-learning models. The most commonly used method to
solve this problem is the use of deep convolutional neural networks. Typically, these works
solve the binary classification problem for the classes (normal and pneumonia) and obtain
fairly high accuracy rates for pneumonia detection.

2.1. Artificial Intelligence and COVID-19 Using Chest CT Scan and Chest X-Ray Images

To strengthen the related work section with relevant references in the domain of artifi-
cial intelligence (AI) applied to medical imaging for COVID-19 diagnosis and treatment,
recent research has explored various machine learning (ML) and deep learning (DL) tech-
niques. Notable works include the use of chest CT scans and X-ray images for diagnosing
COVID-19, the development of models to assist in vaccination strategies, and innovative
pre-training methods guided by clinical priors. A comprehensive review of artificial intelli-
gence (AI) applications for COVID-19 diagnosis using chest X-ray (CXR) and computed
tomography (CT) images highlights significant advancements in AI-based methods for
detecting the disease [6]. The study reviewed 22 papers published between January 2019
and June 2021, focusing on machine learning and deep learning approaches. The results
showed that AI models achieved high performance, with an average accuracy of 93.7% for
CXR and 89.1% for CT. Despite variability in results, especially for CXR, AI’s potential for
disease monitoring, outbreak prediction, and management was evident. No significant
accuracy difference was found between CXR and CT modalities. Cheng et al. [7] proposed
a dynamic social network-based approach for optimizing COVID-19 vaccination strategies,
especially in cases of limited vaccine supply. This method uses data assimilation techniques
to update contact networks in real time, accounting for the variability in interactions and
the impact of SARS-CoV-2 mutations. By identifying individuals with high centrality and
degree in the network, the approach prioritizes them for vaccination. Tested on real-world
and synthetic networks, it outperformed traditional methods in vaccination effectiveness,
offering a more efficient strategy for targeting high-risk populations. Liu et al. [8] proposed
advancements in medical vision–language pre-training (VLP); the IMITATE framework
introduced a clinical prior guided approach for aligning hierarchical structures within
medical reports and chest X-ray (CXR) images. Unlike previous methods that treat clinical
reports as unified or fragmented entities, IMITATE leverages the inherent structure by
aligning descriptive (“findings”) and conclusive (“impressions”) content separately with
multi-level visual features. Additionally, a clinical-informed contrastive loss is proposed
to enhance cross-modal learning. IMITATE outperforms traditional VLP methods across
multiple datasets, demonstrating the effectiveness of integrating structured medical reports
in vision-language alignment.

The authors of [9] proposed various convolutional neural network (CNN) models that
were used as binary classifiers for lung X-rays and achieved 98% classification accuracy.
The authors of [10] classified lung X-rays of healthy individuals and those with signs of
COVID-19 infection using deep pre-trained CNN models ResNet50, ResNet18, ResNet101,
VGG19, and VGG16. The ResNet50 model achieved an accuracy of 92.6%, while the deep
learning CNN model developed in the paper achieved an accuracy of 91.6%. The authors
of [11] proposed a deep learning DarkNet model for two classes, for which it obtained
an accuracy of 98.08%, and for multiple classes of images, it achieved an accuracy of 87%.
In [12], the authors proposed a convolutional neural network model to classify the Normal,
Pneumonia, and COVID-19 classes with an accuracy of 92.4%. Similar studies also used
various deep learning models pre-trained on large datasets, typically on the ImageNet
dataset [13,14]. H. Nasiri and S. Hasani [13] used the DenseNet169 model to extract features
from X-ray images and the XGBoost model to classify them. Thus, the authors obtained
accuracy rates of 98.24% and 89.70% for two and three classes of X-ray images, respectively.
In [14], the authors applied the Transfer Learning method to recognize pneumonia images
and achieved a classification accuracy of 92.32%, precision is 95.69%, and recall is 95.62%
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for the pre-trained ResNet50 model. In [15], two-class classifiers (COVID-19, Normal)
were implemented based on deep models using the 5-fold cross-validation method. The
classification accuracy estimates obtained in the article allowed the authors to claim that the
pre-trained ResNet152 model provided a classification accuracy of 96.1% among the other
deep learning models considered in the article. H. Nasiri and S. Alavi [16] proposed a deep
neural network using the ANOVA method for feature selection and subsequent binary
classification, which achieved accuracy metrics of 92%. The authors of [17] proposed the
CovXR model based on a deep convolutional neural network and obtained a classification
accuracy of 95% for two classes of X-ray images. The authors of [18] developed several
deep learning model architectures that were used to detect COVID-19, such as ResNet50,
InceptionV3, VGG19, and others for classifying two classes of X-ray images. The best model
with an accuracy of 98% in the article was recognized as the model based on the ResNet50
deep neural network.

The increase in COVID-19 CT scans and X-rays accessible since 2021 has caused re-
search to move its attention to machine learning model comparison and development,
as well as the creation of specific models for COVID-19 detection. Twenty CNN models,
including EfficientNet-B5, DenseNet169, InceptionV3, ResNet-50, and VGG16, were eval-
uated using 4173 CT images in research by Garg et al. [19]. VGG-19 ranked lowest, with
ResNet-50 and EfficientNet-B5 regularly outperforming the others in terms of sensitivity
and accuracy. Chouat et al. [20] compared ResNet-50, InceptionV3, VGG-19, and Xcep-tion
and obtained contrasting results. Xception scored best on X-ray pictures (98% accuracy),
while VGG-19 excelled on CT scans (87% accuracy). Similarly, ResNet50 led in another CT
imaging study [21] with a 96.97% accuracy rate, followed closely by Xception, InceptionV3,
and VGG16. The performance of CNN models varies; hence, researchers have looked at
hybrid or ensemble models that combine many networks. Combining Inception V3 and
VGG16 allowed Srinivas et al. [22] to reach 98% accuracy in COVID-19 prediction, outper-
forming both models alone. Using a confidence fusion approach, Wang et al. [23] used
characteristics from Xception, MobileNetV2, and NasNetMobile to achieve classification.

Research findings indicated a range of classification accuracy, from 78% to 100%, which
might be explained by the quantity or caliber of the dataset. Karar et al. [24] used a small
dataset of 263 original X-ray pictures; however, they claimed 99.9% accuracy for VGG-19
and ResNet-50. In contrast, using a larger dataset of 4326 chest X-ray pictures, Kumar
et al. [25] obtained 100% accuracy for binary classification (normal vs. COVID-19) and
98.82% accuracy for multi-class classification (normal, COVID-19, pneumonia).

2.2. Fuzzy Pre-Processing Models in Deep Learning for Pneumonia Detection

The performance of deep learning (DL) models in medical image classification, par-
ticularly in diagnosing diseases like pneumonia, is heavily influenced by the quality of
image pre-processing methods. Researchers have demonstrated that sophisticated pre-
processing techniques can significantly enhance model performance by improving image
clarity and reducing noise [26–28]. One such approach is the use of fuzzy logic, which has
been increasingly integrated into deep learning models to improve the accuracy of medical
diagnoses.

Cosimo et al. [29] introduced a fuzzy logic-based deep learning model specifically for
pneumonia detection. In their model, a fuzzy edge detection algorithm is applied during
the pre-processing phase. This technique aims to sharpen the edges of anatomical structures
within chest X-rays, making it easier for convolutional neural networks (CNNs) to detect
anomalies such as pneumonia. Traditional edge detection methods can often struggle
with medical images due to the presence of noise or varying tissue densities, but fuzzy
logic allows for a more nuanced interpretation of image boundaries, enhancing the overall
quality of the input data. Another innovative approach was proposed by Shin et al. [30],
who developed a fuzzy logic histogram equalization algorithm to enhance chest X-ray
images. This method adjusts the contrast of medical images using fuzzy membership func-
tions, making important features such as lung opacities more distinguishable. Histogram
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equalization typically results in better global contrast but can sometimes cause a loss of
detail in subtle areas. Fuzzy logic, however, enables more adaptive contrast adjustments,
preserving finer details while enhancing the overall visibility of critical structures. In [31],
the authors further developed this concept by employing fuzzy logic to improve X-ray
images in a different way. They designed an algorithm that reduces background noise and
optimizes pixel intensity variation based on a fuzzy membership function. This technique
allows for more precise image enhancements than traditional pre-processing approaches,
which often treat all pixels uniformly. By assigning fuzzy membership values based on
intensity and noise thresholds, this method enhances the quality of the input data, leading
to better performance in subsequent deep learning model classification. Additionally, Sousa
et al. [32] contributed to the field by using fuzzy divergence to select the optimal gray tone
for enhancing medical images. This method calculates the fuzzy divergence of various
tones and applies enhancement through fuzzy membership values. This process leads to
a clearer distinction between normal and pathological regions in chest X-rays, which is
crucial for models that rely on pixel-level distinctions to make accurate predictions.

Despite the clear benefits of using fuzzy logic in pre-processing, CNN-based transfer
learning models sometimes struggle with overfitting, particularly in the testing phase, even
when they show high accuracy during training and validation. This is due to the inherent
limitations of CNN models, which are often pre-trained on large datasets such as ImageNet.
These datasets may not provide enough discriminating features that are specific to medical
images, which tend to have different characteristics than the everyday images used in
general-purpose datasets. Consequently, when these models are fine-tuned for medical
image classification, they may retain features that are not well-suited for distinguishing
between medical conditions like pneumonia and normal lung tissue [33–41].

Fuzzy logic-based pre-processing methods, however, can help mitigate some of these
challenges by providing clearer, more refined input data. The better the quality of the input,
the less likely the model is to overfit to irrelevant features. By reducing noise, optimizing
pixel intensity, and enhancing the clarity of important structures, fuzzy logic techniques
contribute to the robustness and accuracy of deep learning models, making them more
reliable for real-world medical applications.

3. Proposed Method

To accurately detect pneumonia, the study combined the advantages of fuzzy tech-
niques and deep learning into one model, i.e., fuzzy logic with local contrast analysis ability
and feature extraction, and the learning ability of deep learning models. The integrated
method helped to improve the accuracy of pneumonia detection in contrast with previous
deep learning models. Figure 1 illustrates the overall flowchart of the proposed model.
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The proposed framework of the model has the following modules:
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Input image: this block inputs X-ray images.
Image enhancement: this block uses a novel algorithm of fuzzification procedure to

increase the quality of the images. This technique optimizes the fuzzification process by
using a mathematical method to find the membership function. Furthermore, the block
outputs three transformed images using the histogram spread, fuzzy entropy, and fuzzy
standard deviation functions. The image enhancement algorithm consist of 12 steps.

Concatenated CNN model: The proposed Concatenated CNN model is trained on
the fuzzy-enhanced dataset. The detailed information of the dataset development process
is described in the next section. The CNN model gains the ability to distinguish between
regions that are pneumonia and those that are not by using features extracted from the
improved images.

Output: The output of the model is the detection of pneumonia or normal cases.
The proposed pneumonia detection model integrates the fuzzy data processing

method for improvement of images with the benefits of the CNN models such as fea-
ture extraction, high accuracy, and learning capabilities.

The construction and training process of CNN model includes the following steps:

- Model Construction: Activation functions, dropout for regularization, and convolu-
tional, pooling, and dense layers comprise the CNN architecture, which is defined by
using Keras 2.13.1;

- Model Training: TensorFlow 2.15 and Keras are used to build the model, define
the optimizer (Adam), and input metrics (accuracy) and loss function (binary cross-
entropy). A GPU was used to speed up processing during the model’s training
process.

The Anaconda 2020 Python distribution is used to build and test the recommended
configuration on a computer with two Nvidia GeForce 1080Ti GPUs (Nvidia, Santa Clara,
CA, USA), 32 GB of RAM, and a 3.20 GHz CPU.

3.1. Input Dataset and Image Enhancement Using Fuzzy Technique

Medical image datasets serve as the cornerstone of our research, facilitating the training
and evaluation of neural networks for lung disease detection. A comprehensive dataset
preprocessing includes several key steps, ensuring the diversity and representativeness
required for robust model performance. In the context of medical imaging for pneumonia
detection, intelligent sensors play a crucial role in acquiring high-quality data that form
the foundation of deep learning models. The primary imaging modalities used in this
study, such as chest X-rays and CT scans, rely on advanced sensor technology to capture
high-resolution images. The quality and precision of these sensors directly impact the
performance of computer-aided diagnostic systems, including the proposed Concatenated
CNN model.

1. X-ray dataset: In the initial stage, a chest X-ray pneumonia detection dataset is used,
which is publicly available on Kaggle [42]. The dataset has 5856 X-ray images, of which
1583 images were classified as “Normal” and 4273 images were labeled “Pneumonia”;

2. Image enhancement: The second critical step involves enhancing all 5856 images
using a Fuzzy Inference System (FIS). This innovative approach introduces an additional
layer of complexity by including different degrees of membership for each pixel in the
image. The new algorithm is implemented in the fuzzy logic process to improve the image
quality. In addition, a mathematical algorithm for refining the membership function was
developed, facilitating the refinement of the fuzzy logic;

3. Generating transformed datasets: Using three types of local contrast features,
three new datasets are obtained. Each dataset has 5856 FIS-enhanced images. After the
fuzzy enhancement process, the number of images increased three times and the dataset
contained 4749 normal images and 12,819 pneumonia images. A training set, testing
set, and validation set were each allocated 75%, 15%, and 10% of the complete dataset,
which comprised 17,568 images. This dataset encapsulates fine-grained representations
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of lung conditions after fuzzy logic processing, introducing elements of uncertainty and
imprecision that are vital for a comprehensive assessment. See Figure 2.
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Fuzzy Image Enhancement Technique

The image enhancement techniques employed in this study, such as fuzzy entropy
and standard deviation-based enhancement, benefit directly from the high-fidelity data
produced by modern sensors. These sensor-driven images allow for the extraction of fine-
grained features, which are essential for improving the accuracy, precision, and robustness
of the CCNN model in pneumonia detection.

The developed datasets serve as a training and testing ground for our developed
convolutional neural networks, aimed at studying the impact of FIS-transformed images
on model performance. As such, the data augmentation process is carefully designed
to cover the spectrum of lung diseases, providing a robust foundation for training the
neural networks. The integration of FIS enhancement introduces a unique dimension that
is consistent with our overarching goal of improving neural network detection capabilities
in the field of pneumonia detection.

A fuzzy data augmentation algorithm is proposed to improve the image quality in
the fuzzy logic process. This algorithm includes an advanced mathematical approach to
determine the membership function, optimizing the fuzzy logic process. The resulting
fuzzy-transformed images are a specialized dataset designed for training CNN. The image
enhancement algorithm consists of 12 steps and is illustrated in Figure 3.

By giving each pixel in an image a varying degree of membership, the idea of fuzziness
in image processing adds another level of complexity. This makes it possible to account for
uncertainty in the description of things shown in a picture. An image “F” is represented in
a fuzzy framework in which each pixel is linked to degrees of membership, which indicate
how much the pixel belongs to certain groups or categories.

This method offers a more flexible and nuanced representation for studying and
understanding images by acknowledging and accounting for the inherent ambiguity and
imprecision frequently present in real-world images.

F = {⟨ f (x, y), µF( f (x, y)))⟩| f (x, y) ∈ {0, . . . , L − 1}}, (1)

where x ∈ {1, . . . , M}, y ∈ {1, . . . , N}, µF( f (x, y)) denote, respectively, the degree of
membership of the (x, y)-th pixel to the set in accordance with the properties of the image.

When handling image processing jobs that include ambiguity, fuzzy images tend to be
quite useful. Fuzziness is sometimes useful for segmenting items in image, particularly
when the exact borders of the objects are difficult to see. Because it finds it difficult to
handle the underlying ambiguity of an image, standard binary image processing may be
useless in some situations.
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Step 1. Normalization:

u(x, y) = l
f (x, y)− fmin

fmax − fmin
. (2)

Step 2. Fuzzification:

µi
F(x, y) =

1

1 + u(x,y) − ci
σf

, i = 1, k. (3)

Step 3. Fuzzification refinement:

µi
F(x, y) =

{
2(µi

F(x, y))2, 0 ≤ µi
F(x, y) ≤ 1

2 ,
1 − 2(1 − µi

F(x, y))2, 1
2 < µi

F(x, y) ≤ 1.
(4)
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Step 4. In image processing, quantifying local contrast is essential because it makes
evaluating contrast variations between various picture areas easier. Two distinct formulaic
methods have been put forth to compute local contrast in the context of 8-bit grayscale
digital pictures in order to aid in the precise assessment of contrast levels in a geographical
region of an image. With the use of these approaches, contrast fluctuations in an image
may be quantified, enabling more deliberate and focused image processing choices. The
two formulae are shown as follows:

Calculations of local contrast:

C(x, y) = (Cmax − Cmin)/255 (5)

Calculations of global contrast:

C(x, y) =

{
2

∑n
j=1 [ f j − M[ f j]]

2
µj

∑n
j=1 µj

}0.5

255
, (6)

where Cmax and Cmin are the maximum and minimum brightness values in the vicinity of
pixels.

The many local neighborhood categories, which are identified by varying degrees of
pixel luminance smoothness, must be examined in order to fully understand local contrast
and its applications in image processing:

- A homogeneous neighborhood is defined as a local neighborhood where the bright-
ness values of the pixels are comparable or the same. This indicates a high level
of homogeneity in the local neighborhood. In an image, the sky region or other
regions where the pixel brightness is nearly constant would be examples of such a
neighborhood. That is why there will not be any local contrast in this kind of area;

- A binary neighborhood is a local neighborhood characterized by elements displaying
the extremes of the luminance spectrum; in this example, the local neighborhood
consists of pixels, like black and white pixels, whose luminance values obviously
occupy opposite ends of the range. These zones stand out for their extreme contrast,
despite the possibility of abrupt shifts in brightness levels and non-uniformity;

- A local neighborhood including components of different brightness values: in this case,
the local neighborhood covers pixels with different luminance values, although the
transitions between them are not sharp or noticeable. These communities frequently
include intricate features, varied textures, or a range of items with varying degrees of
brightness, all of which lack distinct borders.

Comprehending the characteristics and makeup of nearby communities is crucial for
calculating local contrast. This is because, in order to obtain the intended outcomes, various
neighborhood types may need alternative techniques for contrast estimation or divergent
processing settings to be used. Let us examine how various values of local features, such
as entropy, the histogram distribution function, and standard deviation, may be used to
discriminate between distinct neighborhood groupings. These characteristics are useful
measurements for determining the position and contrast of particular areas within an
image.

Step 5. This involves utilizing the Cumulative Distribution Function (CDF), which
measures the percentage of pixels within an image that have brightness values that are
either below or equal to a predetermined threshold.

hF(x, y) =
fmax − fmin

hmax
, (7)

where fmax and fmin are the minimum and maximum brightness values in a sliding neigh-
bourhood W centred on an element with coordinates (x, y); hmax is the maximum histogram
value of a sliding local neighbourhood W centred at an element with coordinates (x, y).
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In homogeneous regions, this local neighborhood feature takes minimal values,
whereas in binary areas, it reaches maximum values. Since most pixels in a homoge-
nous region have identical brightness values, the CDF will show a pattern that is almost
linear. Given the existence of two dominating brightness levels, the CDF in a neighborhood
that is conditionally binary will exhibit noticeable steps. When there are neighborhoods
with fluctuating brightness values and no abrupt changes in brightness, the CDF will show
more gradual progression.

Step 6: This uses histogram length functions to gauge how much local contrasts have
been transformed:

α = (αmin − αmax)

(
1 − exp(− (hF − a)2

2π2 )

)s

, (8)

where s > 0. See Figure 4.
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Step 7: Entropy: an indicator of the degree of variation or uncertainty in pixel values
within a neighborhood is entropy. An increased entropy score denotes a wider range of
pixel intensities within the defined area. Because there is little variation in the pixel values
inside a homogeneous neighborhood, which is made up of pixels with almost identical
intensities, the entropy will be reported as low. The substantial variation of values in a
basically binary neighborhood characterized by pixels with intensities at the extreme ends
of the spectrum may result in a high entropy. The entropy may be in the moderate range
in neighborhoods with varying intensities and smooth transitions between pixel values,
indicating a moderate level of variability. The following expression defines fuzzy entropy
in a sliding local region of size n × m:

ε(µF) = −a
n

∑
i=1

{µF( fi) ln µF( fi) + [1 − µF( fi)] ln[1 − µF( fi)]}/ log(nm), (9)
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where F( fi) is calculated as follows:

µF( fi) = hF( fi(x, y))/(n × m). (10)

Here, the value of the histogram inside the local neighborhood represented by W is
shown by hF( fi(x, y)). Specifically, it shows how many elements in this neighborhood W
have brightness values fi (x, y) that match the element at coordinates (x, y). Expression
(9) states that regions with homogeneity have the highest fuzzy entropy values, whereas
regions with components that display brightness values at opposing extremes of the
spectrum have the lowest fuzzy entropy values.

Step 8: Use fuzzy entropy to determine how much local contrasts α have been trans-
formed:

α = αmin + (αmax − αmin)

(
ε(µF)− εmin

εmax − εmin

)s
, (11)

where s > 0. See Figure 5.
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Step 9: The standard deviation, typically denoted by the symbol σ (sigma), measures
how brightness values are distributed or dispersed in the region of their mean. The standard
deviation is often low in a homogenous area, where data are closely concentrated around the
mean. On the other hand, if there is a large disparity between the minimum and maximum
brightness values in a conditionally binary neighborhood, the standard deviation could
increase. Neighborhoods with a range of brightness values and no noticeable transitions
may have a moderate standard deviation. Analyzing these features aids in comprehending
the contrast and structural properties of distinct picture areas. This knowledge is useful
for selecting the best processing techniques and modifying processing plans in light of the
distinctive features of nearby communities. Formula (12) is used to compute the standard
deviation of brightness values of the components in a moving neighborhood W.

σ(x, y)F =

√√√√√√√√ 1
nm


n
∑

j=1
[ f j − M[ f j]]

2µj

n
∑
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where M[ fi] is fuzzy arithmetic mean value of the brightness of elements of a local neigh-
bourhood W centred at element M[ fi(x, y)] with coordinates (x, y):

M[ f j] =
1

NM

N

∑
x=1

M

∑
y=1

f j(x, y), (13)
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where N, M are the dimensions of the x = 1, N, y = 1, M image.
In homogeneous neighborhoods, expression (12) equals zero and grows as heterogene-

ity increases.
The fuzzy standard deviation of brightness data is used in Step 10 to ascertain the

extent of local contrast change.

α = αminσ(x, y) + αmax(1 − σ(x, y)s
F)

where s > 0. See Figure 6.
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Step 11: Increase some quantitative measure of local contrast in accordance with a
certain legislation. This phrase is utilized in relation to a nonlinear transformation applied
to local contrast:

C∗(x, y) =


B0 +

(
R
2 − A0

)(
C(x,y)−Cmin

∧
C−Cmin

)α

C(x, y) ≤
∧
C,

R − A0 −
(

R
2 − A0
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Cmax−C(x,y)

Cmax−
∧
C

)α

C(x, y) >
∧
C,

(14)

where R is the highest feasible local contrast value R = 1, C(x, y) is the local contrast value
of the original image element with coordinates (x, y), and C* (x, y) is the enhanced local
contrast value of the image element with coordinates (x, y). The initials Cmin and Cmax
stand for the highest and lowest local contrast levels in the original image, respectively. As
an example, the arithmetic mean of the image components’ local contrasts is C*, which is
an approximation of the mathematical expectation of the local contrast values; constant
bias coefficients A0 and B0 are used. α is the exponent with α < 1.

Step 12: Using improved local contrast, reconstruct the changed image parts.
An essential first step in image processing is the design of a local contrast transform

function. Its formulation is contingent upon some factors that the researchers have estab-
lished, such the limitations that establish the variation in contrast enhancement degree.
These boundaries are crucial in deciding how much local contrast will be improved in
various areas of the image. The researcher’s expertise and knowledge of local statistical
features are essential for choosing the contrast transform function’s parameters.

The selection of parameters is contingent upon the particular objectives and intended
outcomes of image processing, as there is no generally applicable theoretical approach to
attain optimal contrast transform. Finding a compromise between contrast improvement
and artifact reduction is the primary objective when developing a transform function.
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3.2. Architecture of Proposed CNN Models for Pneumonia Detection

CNN layers are the most crucial part of our suggested model. The goal of utilizing this
component is to incorporate the benefits of CNN models, which are quick, effective, and
enable accurate diagnosis of both normal and pneumonia cases. In this work, two types of
deep learning models are developed, i.e., CNN for a dataset with 5856 enhanced images,
and Concatenated CNN. The CCNN is trained on a dataset with overall 17,568 images. The
CCNN model is used because after preprocessing, the fuzzy enhancement model outputs
three images. Our pneumonia detection system’s CCNN and CNN models are described
in the sections below.

3.2.1. The Concatenated CNN Model

The CCNN model introduced in this work utilizes three distinct input branches for dif-
ferent image enhancement techniques—fuzzy entropy, standard deviation, and histogram
equalization. This unique multi-branch design enables the model to leverage complemen-
tary features from each technique, resulting in significantly improved performance metrics
across various datasets.

The design for a Concatenated CNN model with three input layers for pneumonia
detection using 512 × 512 X-ray images is illustrated in Figure 7.

Input 1: First improved image, preprocessed using the histogram spread function.
Input 2: Second variant of improved image, preprocessed through the fuzzy entropy
function.
Input 3: Third enhanced image, preprocessed using the fuzzy standard deviation function.
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Figure 7. The architecture of the proposed CCNN model.

The detail information about architecture CCNN model is presented in Table 1.

Table 1. Information about parameters of the proposed CCNN model.

Layer Input 1 Input 2 Input 3

Convolutional Layer 1: 64 filters, 3 × 3 kernel, ReLU activation
Max Pooling Layer 1: 2 × 2 pooling, stride = 2

Convolutional Layer 2: 128 filters, 3 × 3 kernel, ReLU activation
Max Pooling Layer 2: 2 × 2 pooling

Convolutional Layer 3: 256 filters, 3 × 3 kernel, ReLU activation
Max Pooling Layer 3: 2 × 2 pooling, resulting in feature map size 64 × 64 × 256

Concatenation Layer Concatenate the feature maps from all three branches along the last axis.
Final feature map size: 64 × 64 × 768 (256 from each branch).

Convolutional Layer 4: 512 filters, 3 × 3 kernel, ReLU activation.
Max Pooling Layer 4: 2 × 2 pooling, reducing the feature map size to 32 × 32 × 512.

Convolutional Layer 5: 1024 filters, 3 × 3 kernel, ReLU activation.
Max Pooling Layer 5: 2 × 2 pooling, reducing the feature map size to 16 × 16 × 1024.
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Table 1. Cont.

Layer Input 1 Input 2 Input 3

Flatten Layer: Flatten the 3D feature map to a 1D vector.
Dense Layer 1: 1024 neurons, ReLU activation.
Dropout Layer: Dropout rate = 0.5
Dense Layer 2: 512 neurons, ReLU activation.

Dropout Layer 2: Dropout rate = 0.5.
Output Layer Two neurons (pneumonia or normal), SoftMax activation to assign probabilities.

3.2.2. The CNN Model

The CNN also utilized as feature extractor model as presented in Figure 8. Each of
its several linked layers carries out a distinct task in the processing and analysis of visual
data. Through a progressive process of extracting abstract elements from input images, the
architecture enables the model to learn and detect patterns.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 24 
 

 

3.2.2. The CNN Model 
The CNN also utilized as feature extractor model as presented in Figure 8. Each of its 

several linked layers carries out a distinct task in the processing and analysis of visual 
data. Through a progressive process of extracting abstract elements from input images, 
the architecture enables the model to learn and detect patterns. 

 
Figure 8. The architecture of the CNN model. 

This section offers a thorough explanation of the training settings and model design. 
Layer of Input: This layer accepts the enhanced images that were processed using the 

fuzzy enhancement model. The standard size of these input photos is 512 by 512 pixels, 
which was chosen to balance processing performance with preserving sufficient infor-
mation for accurate classification. 

Layers of Convolution: The activation function named ReLU (Rectified Linear Unit) 
follows 32 filters with a 3 × 3 kernel size in the first convolutional layer. This layer’s main 
goal is to extract basic components, such as edges and rudimentary textures, from the 
incoming pictures. The resulting feature map has dimensions of 254 × 254 × 32. 

The ReLU activation function is used after 64 filters, each with a 3 × 3 kernel, in the 
second convolutional layer. This layer can capture more detailed information by building 
upon the findings of the preceding layer. The feature map’s size is reduced to 63 × 63 × 64 
due to max pooling. 

After 128 filters with a 3 × 3 kernel size, the third convolutional layer applies the ReLU 
activation function. By detecting high-level features such as specific patterns linked to 
pneumonia, this layer abstracts the visual data even further. The final size of the feature 
map is 30 × 30 × 128 after pooling. 

Pooling Layers: Each convolutional layer is followed by a max pooling layer with a 
pool size of 2 × 2 and a stride of 2. These layers perform a downsampling of the feature 
maps, preserving the most significant features while reducing the computational load and 
spatial dimensions of the feature maps. This step is crucial for preventing overfitting and 
improving the model’s ability to generalize. 

Fully Connected Layers: The first fully connected layer, also known as the initial com-
pletely networked layer, is made up of 256 neurons that ReLU has engaged. By transform-
ing the 3D feature maps into a 1D feature vector, it enables the model to carry out complex 
feature interactions. This layer is necessary to merge the retrieved information into a more 
abstract representation. 

The second fully connected layer, which serves to enhance feature extraction and 
prepare the data for the final classification layer, is made up of 128 neurons that ReLU has 
engaged. 

Figure 8. The architecture of the CNN model.

This section offers a thorough explanation of the training settings and model design.
Layer of Input: This layer accepts the enhanced images that were processed using the

fuzzy enhancement model. The standard size of these input photos is 512 by 512 pixels,
which was chosen to balance processing performance with preserving sufficient information
for accurate classification.

Layers of Convolution: The activation function named ReLU (Rectified Linear Unit)
follows 32 filters with a 3 × 3 kernel size in the first convolutional layer. This layer’s main
goal is to extract basic components, such as edges and rudimentary textures, from the
incoming pictures. The resulting feature map has dimensions of 254 × 254 × 32.

The ReLU activation function is used after 64 filters, each with a 3 × 3 kernel, in the
second convolutional layer. This layer can capture more detailed information by building
upon the findings of the preceding layer. The feature map’s size is reduced to 63 × 63 × 64
due to max pooling.

After 128 filters with a 3 × 3 kernel size, the third convolutional layer applies the
ReLU activation function. By detecting high-level features such as specific patterns linked
to pneumonia, this layer abstracts the visual data even further. The final size of the feature
map is 30 × 30 × 128 after pooling.

Pooling Layers: Each convolutional layer is followed by a max pooling layer with a
pool size of 2 × 2 and a stride of 2. These layers perform a downsampling of the feature
maps, preserving the most significant features while reducing the computational load and
spatial dimensions of the feature maps. This step is crucial for preventing overfitting and
improving the model’s ability to generalize.

Fully Connected Layers: The first fully connected layer, also known as the initial
completely networked layer, is made up of 256 neurons that ReLU has engaged. By
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transforming the 3D feature maps into a 1D feature vector, it enables the model to carry out
complex feature interactions. This layer is necessary to merge the retrieved information
into a more abstract representation.

The second fully connected layer, which serves to enhance feature extraction and
prepare the data for the final classification layer, is made up of 128 neurons that ReLU has
engaged.

Using a SoftMax activation function, the output layer assigns a probability score
for binary categorization (normal or pneumonia). This layer generates a vector of two
probabilities representing the likelihood of each class. Since the SoftMax function ensures
that the probability sums up to 1, the model’s predictions make sense.

Binary Cross-Entropy is an appropriate loss function for binary classification applications.
The suggested CNN model’s training parameters are:
Optimizer: The Adam optimizer, renowned for its versatility and effectiveness in deep

learning applications, has an initial learning rate of 0.001.
Batch Size: 32, which strikes a balance between convergence speed and processing

burden.
Epochs: 50 epochs provide the model enough time to learn without overfitting.
Early Stopping: This feature was added to track the validation loss and stops training

if the validation loss does not improve after 10 epochs of patience.

4. Experiments and Discussions

The performance of the model was experimented with different combinations of
experiments. Comparing the concatenated convolutional neural network (CCNN) trained
on the fuzzy-transformed dataset to its counterparts trained on the original image dataset,
the testing findings showed notable improvements in pneumonia diagnosis. Furthermore,
the CNN model is trained using a dataset that is improved using the traditional CLAHE
method. An extensive evaluation using many quantitative metrics, such as accuracy,
precision, AUC, F1-score, and recall, shows how effective the proposed method is.

The experiments examine the impact of different image enhancement methods on the
performance of five convolutional neural network models designed for classification tasks.
Four distinct kinds of datasets were used to train the CNN models: original images, and
images enhanced by fuzzy standard deviation, fuzzy entropy, and histogram equalization.
A concatenated model that included characteristics from all the upgraded datasets was also
created. The goal is to investigate how various image enhancing techniques increase the
resilience and accuracy of CNN classification.

The performance comparison of five measures (Accuracy, Precision, Recall, AUC, and
F1-Score) for different pneumonia detection models is shown in Table 2. Accuracy of 87.1%
was attained by the CNN trained on the original, unaltered pictures, with precision, recall,
and F1-score in the mid-80% range. This model performed quite well; however, it had
trouble extracting pertinent information for precise categorization. It appears from the
relatively low AUC of 84.7% that the model struggled to discriminate between classes,
which might mean that significant picture attributes were not adequately captured in their
raw form.

Table 2. Performance of CNN models.

Neural Network Accuracy Precision AUC F1-Score Recall

Original image-based CNN 0.871 0.865 0.847 0.873 0.852
Histogram-based CNN 0.969 0.947 0.935 0.978 0.975

Fuzzy entropy-based CNN 0.978 0.973 0.967 0.979 0.961
Standard deviation-based CNN 0.961 0.954 0.987 0.989 0.940

Concatenated CNN 0.989 0.993 0.987 0.998 0.996

Three image improvement approaches (fuzzy entropy, standard deviation-based en-
hancement, and histogram equalization) were used to improve feature extraction. Figure 9
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shows much more understandable information. With accuracy reaching 96.9%, the CNN
trained on the histogram-equalized images performed noticeably better. By distributing
pixel intensities more equally and enhancing contrast, this enhancement technique helped
the model better capture global information. When compared to the initial image-based
CNN, the precision (94.7%), recall (97.5%), and F1-score (97.8%) all showed significant
improvements, and the AUC climbed to 93.5%, indicating greater class separation. With
a 97.8% accuracy rate, the CNN that was trained on fuzzy entropy-enhanced images per-
formed even better. Fuzzy entropy is a very useful technique for collecting fine-grained
features since it highlights minute differences and complexity in the picture data. AUC was
96.7%, accuracy was 97.3%, recall was 96.1%, and the model had a strong F1-score of 97.9%.
These findings suggest that the fuzzy entropy-based augmentation improved the CNN’s
ability to recognize important characteristics that were previously hard to pick out. Similar
to this, the CNN trained on pictures improved by the standard deviation had remarkable
performance, with the best accuracy of 96.1% and AUC of 98.7% among the individual
enhancement techniques. By highlighting regions of variability in the picture, standard
deviation augmentation enables the model to identify distinguishing characteristics. The
model’s high F1-score of 98.9% and accuracy of 95.4% were attained, but its recall of 94.0%
was somewhat lower than that of the fuzzy entropy and histogram models, indicating some
conservatism in the identification of positive instances. The concatenated CNN performed
the best overall by combining characteristics from all three improvement techniques. It
achieved a 98.9% accuracy rate, 99.3% precision, 99.8% F1-score, and 99.6% recall. The AUC
of 98.7% provided additional evidence of its capacity to successfully differentiate across
groups. The concatenated model achieved the maximum performance across all criteria by
utilizing the advantages of each individual improvement strategy by incorporating features
from the upgraded datasets.
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Figure 9. Comparison of performance of CNN models.

To evaluate the proposed fuzzy enhancement approach, the original dataset was
filtered using the CLAHE algorithm and the datasets were evaluated using the BRISQUE
algorithm. Additionally, our CNN model was trained on CLAHE-based dataset and
compared with our proposed fuzzy-enhanced algorithm-based CNN models as shown in
Table 3.
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Table 3. BRISQUE values of enhanced datasets.

Dataset BRISQUE Value Neural Network Accuracy

CLAHE-based Dataset 26.8 CLAHE-based CNN 0.951
Histogram-based Dataset 22.4 Histogram-based CNN 0.969

Fuzzy entropy-based Dataset 21.1 Fuzzy entropy-based CNN 0.978
FSD-based Dataset 22.9 FSD-based CNN 0.961

The experimental results, which are shown in Table 1, offer a thorough analysis
of several CNN models that were trained on datasets that had been enhanced using
a variety of image processing methods, such as fuzzy entropy, histogram equalization,
CLAHE (Contrast Limited Adaptive Histogram Equalization), and standard deviation-
based enhancement. The BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator)
technique was used to measure the quality of the dataset. A CNN model was then used
to test the classification accuracy of each upgraded dataset. A summary of the findings is
given below, with particular attention on how BRISQUE measures picture quality and how
various improvement techniques affect CNN model performance.

With a moderate BRISQUE score of 26.8, the CLAHE algorithm, which aims to improve
local contrast, identified some distortions in the images. In spite of this, the CNN that was
trained using the CLAHE-enhanced dataset did rather well, with an accuracy of 95.1%,
perhaps thanks to better contrast. The greater BRISQUE score, however, indicates that the
image quality was subpar. A BRISQUE rating of 22.4 indicates that the dataset produced
by the histogram equalization approach has greater visual quality. With 96.9% accuracy,
the CNN that was trained on this dataset outperformed the others. Histogram equalization
enhanced feature extraction by dispersing pixel intensities and improving global contrast,
which led to superior classification performance as compared to the CLAHE-based model.
The CNN trained on the fuzzy entropy-based dataset performed the best, with an accuracy
of 97.8%. This dataset also had the highest picture quality, with the lowest BRISQUE score
of 21.1. Fuzzy entropy improved feature representation and produced better classification
results by highlighting minor changes and fine features. Compared to the other approaches,
this one produced cleaner pictures, which improved CNN performance. The dataset
generated via standard deviation-based augmentation had a BRISQUE value of 22.9, which
was comparable to the dataset generated by the histogram-based method. A 96.1% accuracy
was attained by the CNN that was trained using this dataset. This approach emphasizes
visual variability, although it may be less accurate than the histogram and fuzzy entropy-
enhanced models due to noise, as seen by the somewhat larger BRISQUE score.

The outcomes and Figure 10 show a strong correlation between CNN model perfor-
mance (it is indicated with red color) and image quality as determined by the BRISQUE
values (it is indicated with blue color). In general, datasets with lower BRISQUE values, a
sign of better image quality, had higher classification accuracy. The best overall strategy
was revealed to be the fuzzy entropy-based improvement method, which produced the
best-quality dataset with the lowest BRISQUE value and the maximum accuracy of 97.8%.
This implies that the fuzzy entropy method helps the CNN extract pertinent information
for classification tasks while simultaneously improving image quality.

While the accuracy of the CLAHE-based dataset was 95.1%, it correlated with inferior
image quality, as indicated by its highest BRISQUE score. Although CLAHE works well for
boosting contrast, it might not have as much of an influence on overall image quality as the
other techniques. The results show how crucial image enhancing methods are to raising
CNN’s level of performance. The suggested fuzzy entropy-based method demonstrated
its effectiveness in generating high-quality datasets that result in improved classification
outputs, outperforming conventional techniques like histogram equalization and CLAHE.

Table 4 presents the performance of the Concatenated CNN model compared to other
neural network models. The assessment measures, which give a thorough picture of each
model’s classification skills, include accuracy, precision, F1-score, AUC, and recall. Almost
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all indicators show that the suggested CCNN model performs better overall, and it stands
out with the highest values.
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Table 4. Performance of our Concatenated CNN model with alternatives.

Neural Network Model Accuracy Precision AUC F1-Score Recall

Proposed CCNN 0.989 0.993 0.987 0.998 0.996
Rahman T. et al. [43] 0.981 0.992 0.981 0.972 0.981

MobileNetV2 [44] 0.964 0.994 0.975 0.956 0.970
CNN [44] 0.922 0.920 0.937 0.955 0.969

LSTM-CNN [44] 0.918 0.926 0.922 0.934 0.954
AlexNet [45] 0.805 0.431 0.981 0.992 0.856

ResNet-50 [45] 0.867 0.645 0.971 0.999 0.914
MobileNet [45] 0.834 0.559 0.969 0.989 0.879

VGG-19 [45] 0.821 0.568 0.941 0.987 0.837

The Figure 11 demonstrates that, the CCNN performs the best, attaining the greatest
recall (99.6%), F1-score (99.8%), accuracy (98.9%), and precision (99.3%). Its remarkable
capacity to differentiate across classes is further demonstrated by its AUC (98.7%). The
exceptional performance of the CCNN is partly attributed to its design, which combines
several feature sets. The almost flawless F1-score shows the optimal ratio of recall to
accuracy, reducing false positives and false negatives. Rahman T. et al.’s model has an
accuracy of 98.1%, precision of 99.2%, and AUC of 98.1%, which is quite near to the
CCNN [40]. The model exhibits strong performance in all measures; however, its recall
(98.1%) and F1-score (97.2%) are somewhat lower than those of the CCNN, indicating
that the CCNN is more adept at accurately recognizing both positive and negative cases.
At 99.4% precision and 96.4% accuracy, MobileNetV2 exhibits impressive performance.
Nonetheless, in comparison to the CCNN, its recall (97.0%) and F1-score (95.6%) are
lower, suggesting that it could overlook some genuine positives. Despite its high level
of precision, this model does not have the recall and precision balance that is required to
reduce classification errors, especially in sensitive applications. Moderate performance is
achieved by the CNN and LSTM-CNN models, which have accuracy ratings of 92.2% and
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91.8%, respectively. Although they are respectable, their F1-scores (95.5% and 93.4%) are
not as good as the CCNN’s higher classification performance. While these models work
well, they are not as good as more sophisticated designs such as the CCNN.
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AlexNet performs far worse, with an accuracy of 80.5% and a very poor precision
of 43.1%. Its poor accuracy suggests that it generates a significant percentage of false
positives, although having a respectable AUC (98.1%), which renders it untrustworthy
for this job. Compared to AlexNet, ResNet-50 performs better, with an F1-score of 99.9%
and an accuracy of 86.7%. But when contrasted with the more balanced CCNN, its lower
accuracy (64.5%) and recall (91.4%) show inconsistent results when it comes to recognizing
true positives. MobileNet and VGG-19 are less competitive because of their lower precision
scores (55.9% and 56.8%) and lower accuracy ratings (83.4% and 82.1%, respectively). Even
with respectable AUC values (96.9% and 94.1%), these models fall short of the CCNN’s
level of accuracy and recall.

In most important performance criteria, the suggested CCNN performs better than
the alternatives, according to the examination of Table 2. This challenge finds that the
CCNN is the most robust model with the best accuracy, precision, and F1-score. The
CCNN outperforms other models in the area by harnessing the advantages of many image
enhancing approaches. Because it offers advantages above conventional CNN structures
and models from the literature, this places the CCNN as a cutting-edge method for difficult
classification problems.

The integration of advanced sensor technology in medical imaging presents a promis-
ing pathway to enhance the performance of the CCNN model for pneumonia detection.
Modern imaging sensors are becoming increasingly capable of capturing higher-resolution
images with greater sensitivity, enabling the detection of fine-grained features in chest
X-rays or CT scans. These improvements provide the CCNN model with more detailed
data to work with, thereby enhancing its ability to identify pneumonia cases, particularly
those that exhibit subtle or early-stage symptoms. In addition to higher resolution, the
development of intelligent sensors with real-time feedback mechanisms can dynamically
adjust imaging parameters such as contrast, exposure, and noise reduction during the
image acquisition process. This ensures that images are of optimal quality before being fed
into the CCNN model, minimizing issues related to poor image quality that could affect
the model’s diagnostic accuracy. By integrating AI-based image quality assessment tools,
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these sensors can further automate the process, ensuring consistent and high-quality data
collection in various clinical settings, including those with limited resources.

Incorporating advancements in sensor technology with the CCNN model could lead
to more accurate and efficient pneumonia detection, improving diagnostic outcomes and
making this technology more applicable across diverse healthcare environments. This syn-
ergy between cutting-edge sensors and AI models holds great potential for revolutionizing
medical imaging and early disease detection.

5. Conclusions

The primary innovation of this study lies in the integration of fuzzy logic-based
image enhancement with deep learning models, specifically a Concatenated CNN (CCNN)
architecture, which offers significant improvements over traditional image processing
and deep learning approaches. This hybrid method effectively combines the strengths
of fuzzy logic (handling uncertainty and improving image quality) and CNNs (robust
feature extraction and classification), resulting in notable gains in performance metrics like
accuracy, precision, F1-score, and recall.

1. Fuzzy Logic-Based Image Enhancement: The fuzzy entropy, fuzzy standard de-
viation, and histogram spread techniques used in this study are novel in their ability to
optimize contrast and highlight subtle image features. These methods enable the CCNN to
capture fine-grained details that are often missed by traditional enhancement techniques
like CLAHE. Unlike previous models that rely on raw or slightly enhanced images, our
approach systematically refines image quality using a custom-designed fuzzification re-
finement algorithm. This leads to significant improvements in the dataset’s visual quality,
as measured by the BRISQUE scores, and enhances the CCNN’s ability to detect complex
pneumonia cases.

2. Concatenated CNN Architecture: The proposed CCNN model is unique in that
it incorporates three distinct input branches corresponding to different image enhance-
ment methods (fuzzy entropy, standard deviation, and histogram equalization). This
multi-branch design enables the model to combine complementary features from each
enhancement method, leading to higher classification accuracy. While traditional CNN
models focus on single datasets, the CCNN’s ability to leverage multiple enhanced datasets
is a key differentiator. This structure allows for greater resilience and robustness in classifi-
cation, particularly in distinguishing between normal and pneumonia cases across diverse
image conditions.

3. Comparison with Existing Methods: Most previous studies, such as those using
pre-trained CNNs (ResNet, VGG, MobileNet), depend on transfer learning and global
image enhancement methods. In contrast, our fuzzy enhancement-based CCNN is trained
from scratch, using fuzzy logic to enhance image quality at the pixel level. This approach
directly addresses issues related to low-quality or noisy medical images, making the model
more effective in clinical environments where image quality can vary. By demonstrating
superior performance across multiple datasets and outperforming state-of-the-art models in
terms of accuracy, precision, and recall, this study establishes the CCNN as a more versatile
and adaptable solution for pneumonia detection. The combination of these enhancement
methods in the CCNN framework results in a notable increase in accuracy (98.9%), precision
(99.3%), F1-score (99.8%), and recall (99.6%), outperforming alternative models like AlexNet,
ResNet-50, and MobileNetV2.

4. BRISQUE-Driven Image Quality Assessment: Highlights that the BRISQUE image
quality assessment adds a distinctive dimension to this work. Many existing models
focus solely on classification accuracy, but incorporating BRISQUE allows for an objective
measure of image quality, directly linking it to CNN performance. This aspect sets our
work apart by demonstrating that models trained on datasets with better image quality
(lower BRISQUE scores) also achieve higher accuracy, offering a quantitative assessment of
the relationship between image quality and CNN performance.
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In conclusion, this research introduces a novel combination of fuzzy logic and deep
learning that offers improved accuracy, robustness, and diagnostic reliability compared
to previous methods. This hybrid approach addresses the limitations of traditional image
enhancement techniques, setting a new benchmark for pneumonia detection in medical
imaging.

In future work, the role of intelligent sensors can be expanded by integrating them
into automated clinical decision support systems, providing real-time feedback during the
image acquisition process. By leveraging advances in sensor technology, the CCNN model
could be further optimized for edge computing applications, enabling early and efficient
pneumonia detection in resource-constrained environments.
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