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Abstract. The analysis and modeling of hydrodynamic processes in open 
channels are crucial for effective water resource management and hydraulic 
structure design. This study investigates unsteady water flow in main 
channels using the Saint-Venant equations. Analytical and numerical 
methods were employed to model various flow scenarios. The developed 
mathematical model effectively describes and analyzes flow characteristics 
such as discharge, free surface elevation, and flow velocity. The obtained 
results have practical applications in water resource management, flood 
forecasting, and infrastructure design for water conservation. Overall, this 

work contributes to the advancement of knowledge in open channel 
hydraulics and provides a basis for developing more accurate and reliable 
water system modeling methods. These equations allow for the simulation 
of hydrodynamic processes in rivers, channels, and reservoirs, enabling the 
prediction of water level fluctuations, flow velocities, and pressure 
distribution under various operating conditions. This plays a vital role in 
water resource management and the design of hydraulic structures.  

1 Introduction  

Water resources management and hydraulic structure design are crucial aspects of sustainable 

development in modern societies. With increasing pressure on water resources due to 

population growth, urbanization, and climate change, the need for accurate and reliable 

methods for modeling hydrodynamic processes is becoming increasingly important. The 

Saint-Venant equations, which describe unsteady water flow in open channels, are one of the 

most important tools used for this purpose. The Saint-Venant equations include the mass 

conservation equation and the momentum conservation equation, which express fundamental 

laws of physics applicable to water flow in rivers, channels, and other hydraulic structures. 

These equations allow engineers to consider important parameters such as water discharge, 

channel bed slope, flow cross-sectional area, average flow velocity, and others, making them 
indispensable for modeling and analyzing water flows. 

The Saint-Venant equations remain relevant and important in modern hydraulic 

engineering design and water resource management. With the increasing frequency of 
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extreme weather events, such as heavy rains and floods, models based on the Saint-Venant 

equations allow for predicting the behavior of water flows and developing effective strategies 

to prevent and mitigate the consequences of floods. When designing dams, channels, 

reservoirs, and other hydraulic structures, it is crucial to consider the dynamic behavior of 

water. The equations help engineers calculate and optimize designs, ensuring their safety and 

efficiency. These equations are used for modeling and analyzing the impact of hydrodynamic 

changes on the ecosystems of water bodies and rivers. This is particularly important for 

developing environmental protection measures and restoring aquatic ecosystems. To ensure 

safe and efficient navigation on waterways, as well as to manage water supply and irrigation 

systems, it is necessary to understand and predict the behavior of water flows. The equations 

provide the necessary tools for these purposes. In the context of climate change, which leads 
to changes in precipitation patterns and water levels, the importance of accurate 

hydrodynamic models is increasing. The Saint-Venant equations help adapt to these changes, 

providing reliable forecasts and the ability to develop adaptive measures. They play a 

critically important role in modern hydraulic engineering design, water resource 

management, and adaptation to changing climatic conditions, underscoring their relevance 

and significance in today's world. 

The purpose of this work is to study and simulate unsteady water flow in open channels 

using the Saint-Venant equations. As part of this goal, the basic equations will be analyzed, 

key parameters and variables will be identified, mathematical models will be developed, and 

new solution algorithms will be proposed. Particular attention will be paid to the application 

of these models to practical problems such as flood management, hydraulic engineering 

design, and environmental impact assessment. 
The scientific novelty of this work lies in the refinement of mathematical models, 

integration of additional factors, development of new solution algorithms, introduction of 

multi-scale modeling approaches, and exploration of the applicability of the Saint-Venant 

equations in new domains. Experimental investigations to validate the proposed models and 

algorithms will confirm their reliability and applicability under real-world conditions. 

Modern information technologies are opening up new possibilities for modeling and 

managing water resources. These technologies make it possible to consider a multitude of 

factors and conditions that affect water management facilities, such as rivers, pumping 

stations, reservoirs, and main channels. GIS systems allow for the collection, analysis, and 

visualization of spatial data. With their help, it is possible to create detailed maps of water 

resources, track changes in real time, and model the consequences of various scenarios, such 
as floods or droughts. Computer models, such as HEC-RAS, SWAT, and MIKE SHE, are 

used to simulate hydrological processes. These models allow for predicting the movement of 

water in rivers and channels, as well as assessing the impact of various factors, such as 

precipitation, evaporation, and water intake. SCADA (Supervisory Control and Data 

Acquisition) systems are used for monitoring and managing water resource infrastructure. 

They allow for the automation of control processes for pumping stations and reservoirs, 

optimizing their operation and reducing the risk of emergencies. 

Modern data analysis and machine learning methods allow us to predict water 

consumption, identify leaks, and detect inefficient resource use. These technologies can 

process vast amounts of data from various sensors and devices, providing more accurate 

forecasts and recommendations. A network of devices equipped with sensors and connected 

to the internet enables real-time data collection on the state of water bodies. IoT devices can 
measure water level, quality, flow rate, and other parameters, providing timely information 

for decision-making. Cloud platforms offer powerful tools for storing, processing, and 

analyzing big data. They allow for the integration of data from various sources and provide 

access to this data for all stakeholders, including government agencies, researchers, and local 

communities. Decision Support Systems (DSS) integrate various models and data to help 

E3S Web of Conferences 590, 02002 (2024)

GI 2024
https://doi.org/10.1051/e3sconf/202459002002

2



managers make informed decisions regarding water resource management. These systems 

can suggest optimal strategies for water allocation, emergency response, and long-term 

resource management planning. Flooding is one of the most serious and widespread problems 

in many countries. Its occurrence is caused by various factors, including intense precipitation, 

blockages in drainage systems, obstacles in riverbeds, and dam failures. This issue has been 

widely addressed in scientific literature, with numerous studies dedicated to understanding 

the causes and consequences of floods, as well as developing methods and strategies for their 

prevention and management. The works of Chan et al [1,2] and Han et al [3] provide a 

detailed examination of various aspects of the flood problem, including geographical 

distribution, causes, and development mechanisms. The authors identify the influence of 

various factors, such as climate change and hydrological processes, on the scale and 
frequency of floods, and also consider the effectiveness of different risk management 

methods and strategies. 

Furthermore, the research by Natasha et al. [4] highlights the role of channel overcapacity 

in causing flooding. They draw attention to the need for a more detailed analysis of the 

hydraulic characteristics of watercourses and rivers to effectively predict and prevent 

catastrophic consequences. Dubey et al. [5] highlight the importance of understanding the 

variability in channel physical and hydraulic parameters for developing effective flood 

management strategies. They offer methods and modeling to analyze and predict the behavior 

of water systems and develop appropriate engineering solutions. In the field of flood 

management, it is common to use hydrological systems models to analyze the dynamics of 

water level, discharge, and flow velocity. Numerous researchers, including Gharbi and 

colleagues [6], Kane et al. [7], Retzinis et al. [8], Dasallas et al. [9], Beyaztas and his group 
[10], and also Kay and his colleagues [11], devoted their work to studying this problem. 

One approach to solving the problem of establishing flow velocity and water depth at 

each model site is using one-dimensional (1D) hydraulic models, as described in detail in 

[12]. However, such models mainly apply to regular and uniform channel sections such as 

rectangles, half-pipes or trapezoids, which limits their ability to account for the complexity 

of irregular shapes of natural river channels [12-13]. Thus, the main impetus for this study is 

the need to develop a mathematical model that can reliably simulate water flow in rivers with 

irregular channel patterns. 

There are numerous mathematical models for studying phenomena in fluids, such as 

Boussinesq Type Equations (BTE), potential theory, and the Navier–Stokes equations. The 

initial set of extended Boussinesq-type equations, often referred to as the Standard 
Boussinesq Equations, was derived by Peregrine [14]. These equations were developed based 

on assumptions of weak nonlinearity and frequency dispersion, primarily applicable to 

relatively shallow water flows due to the assumption of weak dispersion. Subsequent efforts 

to extend the validity and applicability of these Standard Boussinesq Equations have 

significantly improved their features and applicability, as seen in the works of Madsen and 

Sorensen [15] and Nwogu [16]. These equations are widely utilized by researchers to study 

phenomena in fluids, as demonstrated by the works of Kazolea and Delis [17], Forbes and 

his colleagues [18], Jin and co-authors [19], and Magdalena and her co-authors [20]. 

However, working with Boussinesq-type equations presents a challenge in handling 

higher-order terms. Potential theory is not suitable for the numerical investigation of these 

phenomena, mainly because it involves a large number of equations. On the other hand, 

Navier-Stokes equations, as employed in the works of Darrigol [21], Wilcox [22], Menter 
[23], Durbin [24], and Shang [25], offer a comprehensive model but come with a high 

computational cost, resulting in slow computations. 

In this study, we propose a model based on the Saint-Venant equations. These equations 

provide relatively simple solutions both analytically and numerically, which allows for faster 

results with lower computational cost. The works of Magdalena and her colleagues [26-28] 
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extensively describe the methods for analyzing and numerically solving the Saint-Venant 

equations, as well as provide examples of their practical applications. Additionally, working 

with the Saint-Venant equations gives us flexibility in altering channel configurations, cross-

sections, and surface characteristics. This flexibility allows the model to adapt to various 

river and watercourse conditions, which is critically important in the context of river 

management and water resource management tasks.  

Through modeling, it is possible to assess the impact of dam construction or changes in 

river beds on ecosystems and water supply. Modern sensors can monitor pollution and other 

changes in water quality, allowing for prompt responses to issues. Analyzing data on water 

consumption in agriculture helps develop more efficient irrigation schemes, reducing water 

loss and increasing crop yield. The implementation of modern information technologies in 
water resource management significantly enhances the efficiency and reliability of these 

systems, ensuring sustainable development and safeguarding water resources for future 

generations. This work aims to deepen knowledge in the field of open channel 

hydrodynamics and provide new tools for solving current water resource management 

challenges and designing hydraulic structures, which is critically important for sustainable 

development and adaptation to changing climate conditions [29-32]. 

Methods  

This work employs various methods to study and model unsteady water flow in open 

channels using the Saint-Venant equations. The Saint-Venant equations describe unsteady 

water flow in open channels and are an important tool for modeling hydrodynamic processes.   
The mass conservation equation: 

0.
Q

x t

 
+ =

 
                                                            (1) 

This equation expresses the law of conservation of mass, where Q  - is the flow rate of 

water, and   is the cross-sectional area of the flow. 

Conservation of momentum equation: 
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where fi — is the slope of the free surface flow and i  — is the channel bed slope. 

Flow depth: 

( ) ( ) ( )0, , .h x t z x t z x= −  

where ( )0z x — ordinate of the channel bottom. 

Flow cross-sectional area: 

0
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Average current speed: 

.
Q

v


=  

Speed of propagation of small waves: 
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Hydraulic radius of the channel:  
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where X- Wetted perimeter of the channel, С - Chezy coefficient. 

Flow module:  

1
2( , ) .K x z CR

X


= =

 

where ( ),Q x t - Water flow (m³/s), depending on the longitudinal coordinate x  and t  time, 

( ),z x t  - The ordinate of the free water surface (m), depending on x  and t , g  - Gravity 

acceleration (gravitational constant), usually taken as 9.81 m/s², i  - The slope of the channel 

bottom is defined as 0dzi
dx

= − , 
0 ( )z x — the ordinate of the channel bottom,  ( )B z - Flow 

width along the surface of the living section (m). 

Flow ( ),Q x t - characterizes the volume of water passing through the cross-section of the 

channel per unit of time. 

The ordinate of the free surface ( ),z x t  shows the height of the water level in the channel. 

The bottom slope i  determines the slope of the channel and affects the gravitational 

acceleration of the flow. 

The flow width ( )B z  and cross-sectional area ( )z  depend on the channel geometry and 

play an important role in determining the hydraulic characteristics. 

These equations are used to model the behavior of water flows in rivers, channels, 

reservoirs and other hydraulic structures. They predict changes in water level, flow velocity 

and pressure distribution under different operating conditions, which is critical for water 

resource management and hydraulic structure design. 
The Chezy coefficient is determined by the Pavlovsky formula: 

1
6

1
C R

n
= , 

where n  — -channel roughness coefficient. 

The characteristic form of equations (2) has the form: 
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To solve the equations, it is necessary to set the initial and boundary conditions: 

Initial conditions: 

( ) ( )0,0 ,Q x Q x=   ( ) ( )0,0 .z x z x=  

Boundary conditions at points 1 0x =  and 2x l= : 

( ) ( )10, ,Q t Q t=     ( ) ( )2,Q l t Q t=  

A water supply plan is set ( , )q x t  for a period of time [0, ]T . 

So, having the initial and boundary conditions, as well as expressions for all parameters, 

we can begin to solve the system of equations (1)-(2) taking into account all additional 

conditions. 

E3S Web of Conferences 590, 02002 (2024)

GI 2024
https://doi.org/10.1051/e3sconf/202459002002

5



Solution algorithm: 

Setting the initial conditions: ( )0Q x  and ( )0z x . 

Setting boundary conditions: 
1( )Q t  and 

2 ( )Q t . 

Dividing the area into a grid: [0, ]l  by x  and [0, ]T  by t  into small intervals. 

These methods, when combined, enable a comprehensive study of unsteady water flow 

in open channels, ensuring high accuracy, reliability, and applicability of the developed 

models and algorithms in real-world conditions. 

Results  

Let's consider a numerical example of solving equation (1)-(2) using the characteristics 

method: 

Step 1: Setting initial and boundary conditions 

0 ( ) sin
x

Q x
L

 
=  

 
,       

1( ) cos
t

Q t
T

 
=  

 
. 

Step 2: Dividing the area into a grid 

We use a grid with steps x  and t . 

Step 3: Solution by the method of characteristics 

For each time step nt : 

1( , ) ( , )i n i nQ x t Q x v t t+ = −  , 

where ix  — coordinate of the grid node. 

We examined a mathematical model of unsteady water movement in main channels, 

including basic equations, initial and boundary conditions, as well as methods for their 

analytical and numerical solution. 

Integration: At each time step we solve a system of equations for new values ( ),Q x t  and 

( ),z x t . 

Having solved equations (1)-(2) with given initial and boundary conditions, it is possible 

to determine the functions ( ),Q x t  and ( ),z x t  that describe the water flow and the ordinate 

of the free surface at any time and any point in the channel. This allows you to simulate the 

behavior of water flow and optimize the management of water facilities. 

A Python program has been developed that solves the equation using the method of 

characteristics.  

The graph that is created by the program is a contour graph (contour map) of the 

distribution of water flow ( ),Q x t  along the length of the channel and in time (Fig. 1-Fig. 2). 

The x  axis (horizontal axis) represents the distance along the channel, measured from 

the starting point 0x =  to the end of the channel x L= . The t  axis (vertical axis) represents 

the time starting from 0t =  to the ending time t T= . The color scale indicates the water 

consumption values ( ),Q x t  at each grid point. Typically color gradients are used, where 

different colors correspond to different Q  values. For example, darker colors may indicate 

lower flow rates, while lighter colors may indicate higher flow rates. 

At time 0t = , the water flow rate ( ),0Q x  along the channel is determined by the initial 

function ( )0Q x . On the graph, this is represented by the distribution of colors along the x  

axis at 0t = . At the beginning of the channel ( 0x = ), the water flow changes over time 
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according to the 
1( )Q t  function. On the graph, this is reflected by the change in colors along 

the t  axis at 0x = . 

 
Fig. 1. Initial water flow distribution Q (x, 0). 

 

 
Fig. 2. Water flow distribution Q (x, t). 

  

Equation (1)-(2) takes into account the delay effect, that is, the change in water flow at 

the initial section propagates along the channel at a certain speed v . This means that changes 

made at the beginning of the channel will be visible at other points in the channel after a 

certain time. This is represented on the graph by diagonal color-changing lines, which show 

how waves of flow changes propagate along the channel. 

Let us assume that the initial condition ( )0Q x  specifies a sinusoidal distribution of water 

flow along the channel, and the boundary condition ( )1Q t  specifies a cosine change in the 
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flow rate at the beginning of the channel. In this case, when 0t = , the sinusoidal distribution 

will be visible along the x  axis. 

As time increases, changes in the flow rate at the beginning of the channel ( 0x = ) will 

propagate along the channel and appear on the graph as diagonal stripes that move to the right 

at a speed of v . 

The contour graph offers a clear visualization of how water flow changes over space and 

time. It is an essential tool for analyzing the behavior of water flows in the channel, enabling 

the identification of time and place where critical changes in water flow may occur. In 

practical applications, such graphs assist engineers and researchers in making informed 

decisions about water resource management. 

The graph of the solution to equation (1)-(2) shows how the initial and boundary 
conditions, as well as the lag effect, affect the distribution of water flow along the main 

channel over time. This visual tool is useful for understanding the dynamics of water flows 

and optimizing the management of water systems. When you start the program, a graph will 

be displayed showing the distribution of water consumption ( ),Q x t  at various time values t 

from 0 to 1. 

Each curve on the graph will correspond to a specific point in time, allowing you to see 

changes in water flow along the channel over time. 

 
Fig. 3. Distribution of water consumption Q (x, t) at different time values. 
 

Each curve on the graph will correspond to a specific point in time, allowing you to see 

changes in water flow along the channel over time. 

Conclusion 

In this work, unsteady water flows in open channels were investigated and modeled using the 

Saint-Venant equations. The developed mathematical model, which includes the fundamental 

equations of mass and momentum conservation, allows for the effective description and 

analysis of hydrodynamic processes in various types of channels. Throughout the study, 

various methods of analysis and solution were applied, including analytical methods, 
numerical methods, and modeling techniques. These methods enabled both theoretical 

research and practical modeling of different water flow scenarios, including the impact of 

various parameters on flow characteristics. The main results of the work include the 
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development of new mathematical models, the improvement of numerical solution methods, 

and the analysis of the influence of different factors on the behavior of water flows. The 

obtained results can be used for more effective water resource management, the design of 

hydraulic structures, and the prediction of water system behavior under various conditions. 

Overall, this work makes an important contribution to the field of open channel 

hydrodynamics and provides a foundation for further research in this area. The developed 

models and methods can be applied to various engineering and environmental tasks related 

to the use and management of water resources. 
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