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Abstract. This paper discusses the application of quantum algorithms to 
the optimization of energy systems, focusing on solving the routing problem 
in the context of energy. A quantum approach that utilizes the principles of 
superposition and inversion with respect to the mean to efficiently find 
optimal energy routing is proposed. Research is carried out to develop a 
special quantum oracle to represent the structure of energy networks and 
energy flows between nodes. The application of inversion with respect to 
the mean provides efficient convergence to optimal solutions in the space of 
possible routes. We implement the quantum algorithm in the form of a 
quantum circuit, visualize the results and provide an analysis of the optimal 
energy routes. The work represents an important step in the development of 
quantum optimization methods for solving complex problems in the field of 
energy and may have prospects in practical applications in the future. 

1 Introduction 
Energy challenges require the development of innovative approaches to optimize the design 
and management of energy systems. In light of this, quantum computing provides new 
perspectives for solving complex optimization problems, including the routing problem in an 
energy context, which means finding the optimal path to transfer energy between network 
nodes while minimizing costs. In the classical approach, this problem is NP-complete, which 
limits the effectiveness of classical optimization methods. The quantum optimization 
algorithm proposed in this work is based on the principles of quantum superposition and 
inversion with respect to the mean. We develop a quantum oracle to represent the structure 
of energy networks, allowing efficient identification of optimal energy routes. The goal of 
the research is to propose and implement a quantum algorithm that can efficiently solve the 
routing problem in an energy context. We hope that the development and analysis of a 
quantum optimization method can lead to new practical solutions in the energy field, 
providing sustainability and efficiency in the management of energy systems [1-3]. 

This paper presents a mathematical model adapted for a quantum algorithm designed for 
the effective analysis and optimization of circuit solutions in the energy sector. This model 
considers various aspects of energy systems, including cost, primary energy consumption 
and environmental performance, and has the potential to significantly speed up calculations 
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using quantum principles. For numerical analysis and optimization of circuit solutions in a 
quantum context, a quantum algorithm has been developed that is capable of processing 
problems with large amounts of data and taking into account changes in consumer loads. The 
software developed as part of the research is based on the principles of quantum computing 
and can efficiently solve optimization problems using quantum superpositions of states. To 
minimize the objective function, the coefficients of which depend on the selected 
optimization criterion, a quantum iterative process is proposed. This process involves a 
quantum procedure that uses quantum gates and quantum bits, allowing computation to be 
performed in parallel and efficiently exploiting quantum advantages. Proposed methodology, 
based on quantum principles, and software can become key tools for making informed 
decisions in the field of energy optimization, opening new opportunities for faster and more 
efficient analysis and optimization of complex energy systems [4-5]. 

2 Methods  
Let's consider an optimization problem for effectively managing energy transfer between 
different nodes of an energy network. Each node represents an energy facility, such as a 
power plant, substation, or energy consumer. A node can consume or generate a certain 
amount of energy. This can be represented as generation or consumption. Each node can have 
a certain energy reserve, which represents the initial amount of energy available in the node. 
Distances between nodes reflect the cost of transmitting power between them, which may 
depend on physical distance, transmission line characteristics, or other parameters. The 
challenge is to optimize the energy transmission route in such a way as to minimize the total 
transmission cost while satisfying the energy requirements of each node [6-7]. 

The following variables were used to build the model: 

ijx   - binary variable equal to if there is an energy path (transmission line) between nodes i  

and j , and 0  otherwise. 

ip - power consumed (if 0ip  ) or generated (if 0ip  ) by node i . 

iu - variable representing the node's ordinal number i . 

ijc  - cost of energy transfer between nodes i  and j . 

is - node energy reserve i  
The objective function is to minimize the total cost of the route: 
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under the following restrictions: 
Each transmission line must be used exactly once: 
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Each transmission line must be used exactly once at the exit of the node: 
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If node i  connected to a node j  (i.e., 1ijx  ), then variables iu and ju  must be 
different. This condition prevents the formation of smaller loops and ensures that the route 
will be a complete loop through all nodes [8-9]. 

Equations for the energy balance at each node [10-11]: 

 
1, 1,

, 1,2,..., .
N N

j ij i ij i
j j i j j i

p x p x s i N
   

    
 

This model is a combination of routing problem and power system optimization. 
Grover's algorithm was proposed to solve the routing problem [10-12]. 
The oracle function creates an oracle matrix for a given route and node coordinates. The 

oracle matrix is used in Grover's algorithm to identify the correct solution, that is, the route 
with the minimum total length. 

Suppose we have N  nodes, which is represented as a node in the graph, and the edges 
of the graph represent the distance between nodes. Let D  - matrix of distances between 
energy nodes, where ijd  - distance between nodes i and j . 

The oracle matrix O is constructed as follows [13-14]: 

 = −1, if j is a bit of i in binary notation, and j occurs in the route,0, otherwise,  

where i  and j  take values from 0  till 2 1N   (inclusive). Thus, the oracle marks all bit 
strings that represent incorrect routes with -1, and leaves the correct route unchanged (0). 

It is also important to note that for Grover's algorithm to work correctly, the oracle matrix 
must be normalized (all values in the matrix must be in the range from -1 to Normalization 
is usually done by dividing each element of the matrix by the root of the total number of 
elements in the matrix. Thus, the oracle matrix for the routing problem has the following 
form: 

1 0 0
0 1 01 ,
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oracle N
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L  
where the number of rows and columns is equal 

12N
. 

The next step is to apply the oracle matrix to the quantum state [15]. 
Let   - column vector of the quantum state (probability amplitude), and oracleU  - oracle 

matrix. 
Then the operation of applying an oracle to a state is written as: 

oracle oracleU  , 
where  oracle  - new column vector of the quantum state after applying the oracle. If oracleU
- normalized oracle matrix (all values in the range -1 to 1), then the oracle application can be 
written as: 

1 ,
2

oracle oracleN
U 

 

where 2N
 - normalizing factor to maintain the normal state. 

In the context of Grover's algorithm, this process is applied iteratively, which increases 
the amplitudes of the probabilities of correct states [16]. 
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The next step is the application of inversion relative to the average on a quantum state as 
follows [17]. 

Let   - column vector of quantum state, and  oracle  - average value of the amplitudes 
of this state. The average is calculated as: 

2 1

0

1 ,
2

N

oracle ioracleN
i

 




 
 

where N  - number of qubits in the system. 
The inversion operation with respect to the mean is then applied as follows: 

2 ,inversion inversion oracle oracle oracleU       
where inversion  - new column vector of the quantum state after inversion with respect to the 
mean. 

This operation plays a key role in Grover's algorithm, where it increases the probability 
amplitudes of correct states. 

The next step is to generate a random initial route. For this purpose, a genetic algorithm 
is used that generates a random initial route by mixing node indices [18]. 

Genetic algorithm for generating random initial routes in the context of a routing problem 
can be represented as follows: 

Let N - number of nodes. A genetic algorithm creates a population of random routes, 
where each route represents a permutation of nodes [19]. 

To initialize the population, initial routes are randomly created in the form of 
permutations of nodes. 

 1 2 _, ,... ,pop sizePop R R R
 

where iR  represents a random route [20]. 
For each route in the population, its fitness is calculated. Fitness can be defined as the 

inverse of the total route distance. Thus, routes with lower total distance will have higher 
fitness. Routes are then selected from the population to create a new generation. The 
probability of choosing a route is proportional to its fitness. The next step is crossing. Pairs 
of parents of the chosen routes are crossed to create new offspring. Different crossover 
methods can be used, such as single-point crossover or multi-point crossover. Then a 
mutation is made. Some genes in the offspring change randomly with low probability to 
introduce diversity into the population. A new generation is formed by combining parents 
and offspring, then the best routes are selected. 

The next step is to apply Grover's algorithm. The algorithm iteratively applies oracle and 
inversion operations with respect to the mean. 

.final inversion oracle iU U 
 

The probabilities of the different routes are then calculated based on the final quantum 
state. Let us denote the final quantum state after applying Grover's algorithm as final . The 
probability of measuring each state in this final state can be calculated by squaring the 
amplitude of that state. 

If  N  - the number of qubits in the system, and final  - is a state vector, then the 

probability iP  condition measurements i  can be expressed as follows: 
2
.

ii finalP 
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Here 
ifinal - state vector component final  for state i . This is the number that can be 

obtained from the final quantum state after Grover's algorithm. It is important to note that the 
indices i  represent bit strings representing possible route permutations in a routing problem. 

3 Results and discussion 
The use of quantum circuits in the optimization of energy systems represents an innovative 
approach to solving complex problems [21,22]. Quantum circuits have unique properties 
such as parallelism, interference, and quantum gates, making them a powerful tool for solving 
energy optimization problems efficiently and accurately. Quantum circuits for optimizing 
energy systems include quantum gates, quantum permutations, and Grover algorithms. 
Quantum permutations can be used to represent possible routes or configurations of a system. 
Probabilistic oracle operations representing the oracle matrix for the traveling salesman 
problem in the energy sector can be implemented using quantum gates. For example, the 
Permutation operation can be represented using quantum permutations. Oracle and mean 
inversion operations can be applied to quantum states representing different routes or 
configurations of the energy system. Applying these operations iteratively helps to get closer 
to the optimal solution. Quantum circuits and results of quantum calculations are visualized 
(Figure 1-5). Visualization helps to understand the structure of the circuit, the sequence of 
operations and their impact on quantum states. 

 

 
Fig. 1. Quantum circuits 5 nodes. 
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Fig. 2. Solving the routing problem for 7 nodes. 

 
Fig. 3. Quantum circuits 10 nodes. 

 

 

 

Fig. 4. Solving the routing problem for 10 nodes. 

 

 

 
Fig. 5. Solving the routing problem for 20 nodes. 
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The quantum algorithm successfully optimized the route for a given energy system. The 
resulting route is a solution to the routing problem, taking into account the specifics of energy 
nodes and the distances between them. Iterative application of oracle and mean inversion 
operations using a quantum algorithm made it possible to effectively explore the space of 
possible routes and converge to an optimal solution. In doing so, the genetic algorithm has 
been successfully used to generate random initial routes, providing a starting point for 
optimization and complementing the quantum algorithm. The model takes into account 
various optimization criteria, such as cost, primary energy consumption and environmental 
parameters. The quantum algorithm iteratively finds a balance between these criteria, 
allowing informed decisions to be made in the context of the energy system. The application 
of a quantum algorithm to optimization problems in the energy sector offers potential gains 
in energy efficiency, cost reduction and improved environmental performance. Grover's 
algorithm is intended for use on quantum computers and may not provide significant benefit 
over classical algorithms for small instances of the routing problem. 

4 Conclusion 
During the development and research of a quantum optimization algorithm for solving the 
traveling salesman problem in the energy system, a mathematical model of a generalized 
energy complex scheme was developed, which takes into account the features of energy 
networks, determining the nodes and distances between them in the context of the energy 
system. Grover's quantum algorithm is applied to optimize the routing problem in the energy 
sector. The algorithm iteratively applies oracle and mean inversion operations to the quantum 
state, effectively exploring the space of possible paths. A genetic algorithm is implemented 
to generate random initial routes, which is an important step for iterative route improvement 
in the context of the traveling salesman problem. The structure of the energy network was 
optimized using a quantum algorithm, which can lead to improved efficiency in the use of 
energy resources, reduced costs and consideration of environmental criteria. Mathematical 
conditions have been introduced, such as "Elimination of subcycles", which guarantee the 
correctness of the solution to the traveling salesman problem and the absence of smaller 
cycles. Overall, the proposed quantum algorithm represents a promising solution for 
optimizing the traveling salesman problem in the energy sector, ensuring efficient use of 
resources and taking into account environmental aspects. Future research could include 
extending the model, more complex scenarios, and considering additional optimization 
criteria. 
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