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Abstract. The article discusses approaches to solving problems of learning
Markov modeling in speech recognition. A Markov process is a stochastic process
consisting of a sequence of random states, where the probability of transition from
one state to another depends only on the current state and does not depend on pre-
vious states. The result of observing such a process is a sequence of states that the
system goes through during the observation period. The task of model training is
considered the most difficult when using Markov models in recognition systems,
since there is no known unique and universal way to solve it, and the quality of
recognition depends on the result of model training. Therefore, special attention
must be paid to training the model.
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1 Introduction

At present, speech recognition technologies are intensively developing. There are many
areas where speech technologies can find effective practical applications, such as
medicine, banking, telephony, robotics, the automotive industry, forensics, etc. [1].

Currently, special attention is paid to the following promising areas of speech
technologies:

1. Speech recognition for human-machine interfaces: such technologies are used in
smart homes, voice assistants, automotive systems, mobile and other devices where
voice control is required.

2. Speech synthesis technologies: These technologies are used to create an artificial
voice, for example, for people with a speech impairment.

3. Systems that determine the personality of a speaker can be used for two main purposes:
verification and identification.
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Speaker verification systems are used to verify a person’s identity. Typically, such
systems are used to authorize users to access computer and information systems, as well
as to control access. In this case, the system checks whether there is a voice in a pre-
created voice database that the system expects to hear. Speaker identification systems,
on the other hand, allow the identification of a person. Such systems are used in areas
such as military affairs, communications, forensics, etc. The above-mentioned systems
use methods and algorithms for speech recognition and signal processing, which make it
possible to extract unique characteristics of the voice, such as frequencies, intonations,
and rhythms [2—11]. One such method is Hidden Markov Models (HMMs).

HMMs are a mathematical tool for modeling data sequences where the next state
depends only on the current state and is independent of previous states. HMMs can
be used for speech recognition, where data sequences represent speech commands and
model states correspond to speech phonemes [12].

The task of model training is one of the key and complex tasks in Markov modeling.
Model training is based on the existing training data set to create a statistical model
that will reflect the dependencies between the states of the system and its input data.
The learning problem can be solved using the Baum-Welch algorithm, which uses the
maximum likelihood method to estimate model parameters and evolutionary algorithms.
Such algorithms make it possible to determine the optimal values for the model param-
eters, maximizing the probability of obtaining an observed sequence for a given model
[13].

Let, given a system that at an arbitrary point in time can be in one of N different
states S1, S2, ..., Sy.

At discrete times ¢ = 1, 2, ... The system passes from one state to another, but can
remain in the existing state (the current state at time t will be described as g;) [3-5]. In
this case, the transitions are carried out in accordance with a certain probability matrix,
described as

pij =pla: = Sjlgi—1 = Si]. 1<i,j<N. (1)
In this case, p;; has the following properties:

pij =0, 2

N
Y =1 3)
j=1

A Markov process is a stochastic process consisting of a sequence of random states,
where the probability of transition from one state to another depends only on the current
state and does not depend on previous states. The result of the observation of such a
process is a sequence of states that the system goes through during the observation
period [14].

Having a process model in the form of a probability matrix A = p;; and an initial
state matrix I1; = p[q; = S;], 1 < i < N, one can calculate the probability of any
sequence of states, i.e. any observation [15].
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In practice, the so-called hidden Markov models are most common. They are used
to model sequences of observed data that are the result of some hidden process. In this
case, the hidden process is modeled as a sequence of states that change over time in
accordance with the probabilistic transitions between them. Each state of the hidden
process generates some observation, which becomes visible to the observer. The prob-
abilities of transitions between states and the probabilities of generating observations
are determined by the parameters of the model, where they can be estimated from the
observed data using training methods. In such models, the observed events are proba-
bilistic functions of the real state of the system. In Hidden Markov Models, the observed
events are called "observable variables" or "outputs”, and the states of the system not
directly observed are called "hidden variables" or “internal states”. The output data is
the result of some process, depending on the internal state of the system. The probability
of observing each specific sequence of output data for a given sequence of internal states
is determined using conditional probabilities [16].

Typically, Markov models can be described by the following sets of parameters [17]:

1) N is the number of model states.

2) M is the number of different observables in each state by the symbol (i.e. the size of
the alphabet) V = {Vy, V2, ..Vn}..

3) A = {pjj} - matrix of transition probabilities, where

pij = plai+1 = Sjlar = Si], 1<i,j<N. €))
4) G = {gj(k)} - probability distributions of observed symbols in state j, where
gi(k) =plv|lg =581, 1 <j<N, 1<k <M. (5)
5) I = {I1;} is the probability of each initial state, where
IIi=Plg1 =Si], 1 <i<N. (6)

By setting the values of the parameters N, M, A, G and I1 for Markov models, it can
be used as a sequence generator.

To generate a sequence with a given number of elements, you must specify the initial
state of the system (that is, one of the possible states that the hidden process can take)
and sequentially generate new states and corresponding observable events. This process
is carried out in the following steps [18]:

1. Set the initial state of the system by selecting one of the possible states of the hidden
process.

2. Using the matrix of transition probabilities A, select the next state of the system based
on the current state.

3. Using the probability matrix G, generate an observable event corresponding to the
current state.

4. Repeat steps 2 and 3 the specified number of times (until the required sequence length
is reached).

Based on a given algorithm, it is possible to generate a sequence of observed events
corresponding to a given statistical model. The resulting sequence is used to test speech
recognition algorithms.
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In addition, when using HMM for pattern recognition, it is necessary to solve the
following three problems [19]:

1. The task of training the model. The HMM parameters are determined based on
the training set. To determine the parameters, it is recommended to use the EM-algorithm
(expectation-maximization algorithm).

1.1. Initialization of model parameters (transition_matrix, emission_matrix and ini-
tial_distribution). Model parameters in the context of HMM describe the probabilities
of transitions between states and the probabilities of symbol emission in each state.

The transition matrix determines the transition probabilities between model states. If
the HMM has N states, then the transition matrix will be NxN in size. Each element (i, )
of the matrix represents the probability of transition from state i to state j. It is important
that the sum of the probabilities in each row (or column) of the transition matrix be equal
to 1, since a state must always transition to one of the states (including itself).

The emission matrix determines the probabilities of observing symbols for each state.
If the HMM has N states and M possible symbols (for example, in a speech recognition
problem, M can be equal to the number of different sounds), then the emission matrix
will be N x M in size. Each element (i, k) of the matrix represents the probability of
observing character k while in state i.

The initial distribution determines the probabilities of the initial states of the model.
If the HMM has N states, then the initial distribution will be a vector of size N. Each
element i of the vector represents the probability that the model will start in state i.

They must be normalized so that the sum of the rows in the matrices is 1.

1.2. E-step (Expectation step):

The Forward-Backward algorithm is implemented to calculate the posterior proba-
bilities.

Forward algorithm:

Initialization of the alphas array with zero values.

Calculate the first element of alphas[0] as the product of initial_distribution and
emission_matrix for the first observation.

For each next time step #:

alphas[t] is calculated as the product of the emission_matrix for the current
observation and the scalar product of alphas[f—/] and transition_matrix.

Backward algorithm:

Initializing the betas array with units.

The last element of betas|[num_observations - 1] is calculated to be 1.

For each time step 7 from num_observations - 2 to 0:

Calculate betas[z] as the product of the emission_matrix for the next observation
times the scalar product of betas[s + /] and the transition_matrix.

Calculation of gamma and xi:

posterior probabilities of states (gamma) by normalizing the product of alphas and
betas for each time step;

posterior transition probabilities (xi) for each time step using alphas, betas,
transition_matrix and emission_matrix.

1.3. M-step (Maximization Step):

The model parameters are updated to maximize the expected likelihood:
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Initial Distribution Update:

initial_distribution as average gamma values for the first time steps.

Transition matrix update:

each transition_matrix element as the sum of the xi values for the transition from
state i to state j divided by the sum of the gamma values for state i (excluding the last
time step).

Emissions matrix update:

each element of the emission_matrix as the sum of the gamma values for state i when
the observation matches symbol k, divided by the sum of the gamma values for state i.

1.4. Repetition of E-step and M-step:

Steps E and M are repeated for a certain number of iterations or until parameter
changes are negligible.

1.5. Model Rating:

After reaching the stopping criterion, evaluate the trained model parameters
transition_matrix, emission_matrix and initial _distribution.

2. The problem of estimating the probability of observation. Let the HMM and the
observed sequence be given. It is necessary to determine the probability of observing
a given sequence for a given model. To solve this problem, you can use the Forward-
Backward algorithm, which is carried out in the following steps:

2.1. Initialization:

Model parameters are set: transition_matrix, emission_matrix, and
initial_distribution.

Assigning an observed sequence of characters to observations.

2.2. Forward pass:

The alphas array of size (num_observations, num_states) is initialized with zeros.

The first element of alphas[0] is computed as the product of initial_distribution and
the corresponding emission probability from the emission_matrix for the first observation
observations[0].

For each time step # from 1 to num_observations - 1:

For state j:

Alphas[z,j] is calculated as the sum of the products of alphas[z-/, i], transi-
tion_matrix[i, j] and emission_matrix[ j, observations[#]] for all states i.

2.3. Backward pass:

The betas array is initialized with a size of (num_observations, num_states) units.

Assigned to the last element betas[num_observations - 1] 1.

For each time step 7 from num_observations - 2 to 0:

For state i:

Betas[#, i] is calculated as the sum of the products of transition_matrix[i, j],
emission_matrix[ j, observations[z + /]] and betas[z + 1, j] for all states j.

2.4. Observation Probability Calculation:

The overall probability of the observation is calculated as the sum of the probabilities
in the last time step alphas[—1].

2.5. Result output

Output the probability of observation obtained in the previous step.
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It should be noted that the algorithm uses two passes: forward and reverse. The
forward pass computes alphas (forward passes), which represent the probabilities of
being in a particular state at each time step, given observations up to that point. The back
pass computes betas (back passes), which represent the probabilities of remaining in the
state after observing all subsequent symbols. After performing the backward pass, the
total probability of the observation is calculated as the sum of the probabilities in the last
time step alphas[-1]. This value represents the desired probability of observing a given
sequence given a hidden Markov model.

3. The task of decoding. Let the HMM and the observed sequence be given. It
is necessary to determine the most probable sequence of hidden states. To solve this
problem, the Viterbi algorithm is used, which is carried out in the following steps:

3.1. Parameter initialization:

The number of hidden states (num_states) and the number of possible observations
(num_symbols) are determined.

The transition matrix (transition_matrix) is initialized with the probabilities of tran-
sitions between hidden states, the emission matrix (emission_matrix) with the prob-
abilities of generating observations from hidden states, and the initial distribution
(initial _distribution) with the probabilities of initial states.

3.2. Viterbi algorithm:

Input data: a sequence of observations (observations).

The dp matrix is initialized to store the highest probabilities and the prev_state matrix
to store the previous states and the first time step of the dp matrix with initial probabilities.

Based on time steps and states, the highest probabilities and previous states are
calculated according to the Viterbi algorithm.

The path is decoded starting from the last time step based on the prev_state matrix.

3.3. Result output:

The decoded path of hidden states (decoded_states) obtained by the Viterbi algorithm
is displayed.

When using Markov models, training with test sequences is time consuming. It
should give a method for finding model parameters such as to maximize the probability
of a sequence of observations matching a given model. Consider an iterative procedure
for choosing model parameters [12].

In the procedure of iterative refinement of the parameters of Markov models, it is
necessary to determine the probability of the system being in state S; at time ¢ and in
state S; at time ¢ + 1 for given model parameters and a sequence of observations, i.e.

&G, ) =prg =Si, qi+1 =510, 1) (N
In direct and inverse variables, the probability is defined as
o (Dpijg (O Bi+1() 4 (Dpij&gi(Or41) Br+1())

p(OI1) NN N
'21 21 o (Dpij&j(Or+<1) Br+1())
i=1j=

& (i, )) = ®)
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Expressing y; (i) in terms of summation over & (i, j), we get:

N
yi(i) = Y &) (10)
j=1
Based on the above formulas for refining Markov models, the following can be

written:
Expected frequency of being in state S; at time t = 1:

T = 11G); (11
T-1
(0.J)
pj="t—— (12)
> vi(d)
t=1
T
0; =
> wl). Gk = S+ (13)
1=l Zl 7:()
=

Certain parameters are most likely to represent a given sequence of observations.

One of the main problems in HMM training is the problem of getting into the local
optimum in the process of model optimization. This can cause the model optimization
to stop at a loss function value that is not the global optimum, and therefore the model
will not have the best recognition accuracy.

To overcome this problem, many approaches have been proposed so far. One is to
use a stochastic optimization method such as Markov Chain Monte Carlo (MCMC) or
Stochastic Gradient Descent (SGD). These methods make it possible to get out of the
local optimum and provide a wider search for the parameter space.

In addition, global optimization methods such as genetic algorithms or ant colony
based global optimization methods or other evolutionary algorithms can be used. Such
methods also make it possible to avoid local optimal.

To do this, at the first stage of the evolutionary algorithm, an initial population of
solutions is randomly generated, which are various combinations of model parameter
values. Then the quality of each solution is evaluated using an evaluation function, which
can be, for example, the likelihood function of the model. Next comes the selection of
the most adapted solutions (the best). The crossover operator combines parts of two
parent solutions to create new offspring, and the mutation operator randomly changes
the parameter values in the new solution.

The evolutionary algorithm repeats the process of creating new generations of
the population until a given stopping criterion is reached (for example, reaching the
maximum value of the evaluation function or reaching a certain number of iterations).

The use of evolutionary algorithms for HMM training has a number of advantages,
such as the possibility of finding a global optimum and reducing the dependence on
starting parameters. And also, the evolutionary algorithm allows you to optimize not
only the parameters of the model, but also the choice of training sequences, which can
improve the quality of recognition.
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2 Results

HMM-based speech recognition requires the formation of informative speech features. In
literatures [20-31], interesting works have been carried out on the formation of features
and the identification of informative features. To form features in this work, MFCC
coefficients were used to represent speech in the form of a vector of features, which are
obtained as a result of the Fourier transform of temporal speech signals presented in the
form of a spectrogram into a Mel-frequency representation. MFCC coefficients take into
account the peculiarities of the perception of sounds by the human ear, since the chalk-
frequency representation better matches the perception of high and low frequencies.
Next, the obtained coefficients are transformed using cepstral analysis, which helps to
highlight important signal characteristics and reduce the dimensionality of the data.

The number of features (MFCC coefficients) depends on the specific task and may
be different. Typically 12 to 20 MFCCs are used, although more may be used in some
cases. The number of MFCC coefficients can be chosen experimentally based on the
quality of speech recognition on test data.

The algorithm for extracting MFCC coefficients consists of the following steps:

The audio signal is split into overlapping frames.

Applies a window function (such as Hamming) to each frame.

The Fourier transform is applied to the windowed frame.

The magnitude spectrum is calculated for each frame.

Mel filters are calculated to convert the magnitude spectrum into a Mel spectrum.

Mel filters are applied to the magnitude spectrum.

The logarithm of the resulting Mel spectrum is calculated.

A discrete cosine transform (DCT) to the logarithm of the Mel spectrum is performed.

The output of this algorithm is the MFCC coefficients, which are represented as
vectors for each frame.

[[0.7422303 0.5532607 0.68049966... 0.95503917 0.32147816]

[0.0786073 0.9745327 0.52009533 ... 0.71336791 0.79554746]

[0.0726853 0.0393421 0.02926857 ... 0.85601778 0.20057767]

[0.5490482 0.3676609 0.15398193 ... 0.29524076 0.48544261]

[0.4670125 0.2525328 0.21170367 ... 0.76408712 0.64643327]]

At the next stage of speech recognition, the creation of HMM and training is carried
out. Below is the result of this step:

Trained Transition Matrix:

[[8.58531871e—01 1.41467622e—01 ... 5.06242437e—07]

[4.01853960e—10 6.00927764e—01 ... 3.99072235¢—01]

[2.71153867e—01 1.12751763e—09 ... 7.28846132e¢—01]]

Trained Emission Matrix:

[[3.74174969e—01 1.84769465e—01 ... 4.15451791e—20 4.41055566e—01]

[5.09872773e—06 6.52057991e—01 ... 2.85676830e—01 6.22600806e—02]

[1.64715419e—01 2.93611122e—01 ... 3.31506967e—01 2.10166492e—01]]

Trained Initial Distribution:

[1.14160670e—96 1.00000000e+00 ... 7.05398021e—48]

This step uses the EM (Expectation-Maximization) algorithm, which is a powerful
and commonly used technique in machine learning. It has several advantages that make
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it useful for solving various problems, since the EM algorithm allows you to work with
data in which some information is missing or hidden (for example, observable and hidden
variables). This can be useful when training models when certain variables cannot be
directly observed. The EM-algorithm seeks to maximize the likelihood function, which
allows obtaining the most probable model parameters for a given sample, can be used for
data clustering, as well as for training models of a mixture of distributions, which makes
it useful for analyzing unstructured data and is resistant to the presence of outliers
in the data, since it is based on a probabilistic model and averages the influence of
different observations. The algorithm works iteratively, improving the current solution
at each iteration. This allows reaching local optima and achieving convergence. The EM
algorithm can be applied even if there is not enough data to fully train the model, as it
uses an E-step to estimate latent variables and an M-step to update the parameters.

However, it has some drawbacks: the EM algorithm is sensitive to initial approxi-
mations of the parameters. Different initial conditions can lead to different local optima.
This can make it difficult to obtain globally optimal model parameters. The EM algo-
rithm does not guarantee convergence to the global optimum. It can get stuck at local
extremes even if there is a global optimum. At each iteration of the EM algorithm, it
is required to calculate the latent variable expectations (step E) and update the model
parameters (step M). This can be computationally expensive, especially for complex
models or large amounts of data. The EM algorithm requires multiple repetitions of
steps E and M until convergence. In some cases, convergence may take a long time or
even not be achieved. The EM algorithm uses optimization methods that often require
the likelihood function to be differentiable. This limits its applicability to models for
which it is difficult to calculate derivatives. If the initial parameters of the model are
poorly chosen or the model is too complex, the EM algorithm may converge to local
extrema where the model likelihood is close to zero. The EM algorithm does not always
work well if the data has a complex structure, for example, when there are outliers that
are out of the general distribution.

The next step is to estimate the observation probability based on the Forward-
Backward algorithm. This algorithm allows you to calculate the probability of observing
a sequence of characters, as well as the distribution of hidden states in each time step.
One of the key advantages of the algorithm is its ability to estimate the probability of
observing a particular sequence of characters given a model. The algorithm can be used
to decode hidden state sequences based on the observed sequence. This is important in
tasks related to the recognition, decoding or classification of sequences. The forward-
backward algorithm can be used to train HMM parameters based on observed data. It
can help find optimal parameter values that maximize the likelihood of observing data.

The next step is decoding. Where it is required to determine the most probable
sequence of hidden states. For this, the Viterbi algorithm is used - this is an efficient
method for decoding hidden states in HMM. It has several advantages that make it an
important tool in the analysis of data sequences. The Viterbi algorithm finds the optimal
hidden state sequence that most likely resulted in the observed data sequence. This
makes it indispensable in tasks where it is required to choose the best explanation for the
observed data. It has linear complexity with respect to the length of the observed sequence
and the number of states in the model. This allows fast and efficient decoding of large
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amounts of data. The Viterbi algorithm can be used for various types of hidden Markov
models, including discrete and continuous state models, as well as mixed models. The
implementation of the Viterbi algorithm is relatively simple and can be done with a
relatively small amount of code. This makes it available for practical implementation in
various applications. The Viterbi algorithm works in a local context, choosing the optimal
state based on local transition probabilities. This reduces the amount of computation and
memory required for decoding.

Finally, a genetic algorithm can be used to optimize model parameters. There are var-
ious optimization methods that can be used to solve problems, including HMM learning
problems.

Methods based on mathematical calculations, which use mathematical calculations
to find the optimal solution. They can be directional (e.g. gradient descent) or non-
directional (e.g. coordinate descent). Directional methods involve determining the direc-
tion of the function’s steepest decay and then moving in that direction to find a local
extremum. For example, the gradient descent method uses the gradient (derivative) of a
function to determine the descending direction.

Enumeration methods are based on enumeration of all possible solutions in order to
find the optimal one. These methods can be quite slow and inefficient for large search
spaces, but they are guaranteed to find the optimal solution. An example would be the
brute force method, when all possible combinations of parameters are checked.

Methods that use the element of randomness include a random element in the opti-
mization process. An example would be simulated annealing, which starts with a large
random variance and then reduces it gradually, allowing the system to “cool” and find
an optimum over a narrower range.

When considering the problem of HMM learning, methods based on mathematical
calculations can be problematic due to the complex structure of loss functions and
differentiability constraints. Enumeration methods can be inefficient due to the high
dimensionality of the search space. Methods that use randomness can be helpful in
avoiding getting stuck in local optima.

The genetic algorithm can be used to optimize the number of hidden states in the
SMM, which can improve the accuracy of speech recognition. The HMM training prob-
lem is a global optimization problem, since it is required to find the optimal model
parameters that provide the best fit to the observed data. Genetic algorithms are capa-
ble of performing global searches and can help avoid getting stuck in local optima. The
HMM training task may involve tuning a large number of parameters, such as initial state
probabilities, transition matrices, and emission functions. Genetic algorithms are well
suited for working with high-dimensional problems and combinatorial spaces. Genetic
algorithms do not require differentiability of the objective function, which is an advan-
tage, since the likelihood functions are distorted in the HMM learning problem and do
not always have analytical derivatives. Genetic algorithms can be applied to various types
of HMMs such as Hidden Markov Models with continuous or discrete states and various
emission functions. Genetic algorithms can be easily adapted for parallel computing,
which makes it possible to speed up the HMM learning process, and can be adapted to
work with constraints on model parameters, which is important in the HMM learning
task with limited resources. HMM training objectives can have a variety of structures
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and requirements. Genetic algorithms can be applied to solve complex, unstructured
problems where other optimization methods may be less effective.

The resulting GA solution: Trained Transition Matrix:

[[0,96 0,04 ... 0]

[00,92 ... 0]

[00...1]]

The disadvantages of existing HMM learning methods are their strong dependence
on initial conditions and the inability to find a global extremum. There is no single best
method for teaching HMM, and different approaches can be used for this task. One
of such approaches considered in the work is genetic algorithms (GA). Genetic algo-
rithms are optimization methods based on the principles of natural evolution. They are
a promising and actively developed direction in the field of optimization of multicriteria
problems.

3 Conclusions

The use of HMM for speech recognition is based on the following assumptions:

All speech can be represented as a sequence of sounds or phonemes. The probability
of each phonemic state depends only on the previous state, not on earlier states. The
sound wave of speech contains some level of noise and ambiguity, and HMM allows
you to model this noise in order to improve recognition accuracy. HMMs use statistical
methods to estimate model parameters based on a large amount of training data and
determine the most likely sequence of states for a given speech wave. Building a model
for speech recognition requires large amounts of computational resources and time for
training, as well as parameter optimization to ensure maximum recognition accuracy.

The advantages of genetic algorithms in solving the HMM learning problem are
that genetic algorithms work with several points in the search space at the same time.
This avoids getting stuck in local optima and improves the probability of finding glob-
ally optimal HMM parameters. Genetic algorithms operate on coded representations of
parameters, which can be chosen to better fit the characteristics of the problem. This
gives greater flexibility and adaptability of the algorithm to a specific task and work
with parameter codes regardless of their interpretation. This allows the algorithm to be
applied to different types of parameters and tasks. Multipoint search reduces the chance
of getting stuck in local optima. Genetic algorithms contribute to the exploration of the
solution space, which is especially important for problems with many local extrema and
work based only on information about the objective function at an arbitrary point and the
range of acceptable parameter values. This simplifies the process of tuning the algorithm
and its application to various problems.
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