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Abstract. Agriculture is a key sector ensuring food security. In the face of 
modern challenges such as climate change and sustainable use of 
resources, it becomes necessary to introduce innovative technologies to 
improve the efficiency of agriculture. Assessing soil fertility plays a 
critical role in optimizing the use of fertilizers and resources. One 

innovative approach is the use of quantum technologies to assess soil 
fertility. Variational quantum chains (VQC) provide a unique opportunity 

to efficiently solve classification problems in the context of soil 
characterization data analysis. In this study, we used data on soil chemical 
and physical properties, including density, moisture, pH, nitrogen, 
phosphorus, and potassium. To build the VQC model, we converted these 
data into quantum states using various ansatzes such as ZZFeatureMap and 
RealAmplitudes. To compare the results, we used traditional classification 

methods such as support vector machine (SVM) and compared them with 

the results obtained using VQC. We split the data into training and test 
sets, trained the models on the training data, and evaluated their 
performance on the test data. The advantages and limitations of using 
variational quantum circuits in assessing soil fertility were discussed. The 
prospects for further development and improvement of the methodology 
were considered. Variational quantum chains represent a promising 
direction for the development of innovative methods for assessing soil 

fertility in agriculture. The results of our study highlight the potential of 

quantum technologies in agriculture and the need for further research in 
this direction. 

1 Introduction 

Agriculture is a critical sector in ensuring food security and meeting the needs of a growing 

population. However, efficient agricultural production requires not only the experience of 

farmers, but also modern technologies for precise management of re-sources and 
optimization of yields. In this context, accurate assessment of soil fertility plays a key role 

in making informed decisions regarding fertilization, watering and tillage approaches. 

Traditional fertility assessment methods, although widely used, have their limitations, such 

as high costs for equipment and laboratory testing, as well as time delays in obtaining 
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results. With the development of quantum computing and the use of quantum algorithms in 

the field of machine learning, new prospects are opening up for more efficient and accurate 

assessment of soil fertility [1]. 

This paper explores the application of variational quantum algorithm (VQC) to ef-

fectively assess soil fertility levels. In modern agriculture, accurate assessment of land 

fertility plays a key role in optimizing agricultural production. While traditional as-

sessment methods are often limited, new approaches such as quantum computing provide 

promising opportunities for solving complex data analytics problems in agri-culture. The 
paper presents the results of using VQC as a tool to create a model capa-ble of predicting 

the level of soil fertility based on its chemical and physical charac-teristics. To build a 

quantum model, libraries and tools provided by quantum compu-ting platforms such as 

Qiskit are used. The developed model is tested on real data from soil samples, providing a 

perspective on the efficiency and accuracy of quantum methods in agriculture [2]. 

The purpose of this paper is to present the results of a study conducted using VQC to 

estimate land fertility based on real data. Sections of the work include a description of the 

methods and tools used, a presentation of the architecture of the quantum model, an 
analysis of the results, and a discussion of the prospects for the use of variational quantum 

algorithms in agriculture[3]. 

In today's world, faced with the challenges of global climate change and growing 

demand for food, agriculture is becoming a key area for sustainable development. Effective 

management of rural resources is becoming more critical and accurate assessment of soil 

fertility plays an important role in ensuring high yields and optimiz-ing agricultural 

production. Traditional methods of assessing fertility, such as chemi-cal soil tests, are often 

associated with high costs, labor intensity and time delays. In this regard, the emergence of 
innovative methods such as variational quantum algo-rithms (VQC) provides an 

opportunity to revolutionize the approach to agriculture. Using VQC to assess land fertility 

promises to speed up the process and improve the accuracy of the results. Quantum 

computing makes it possible to efficiently process and analyze complex data, making VQC 

a promising tool for solving the problems of precision agriculture and improving the 

resilience of agriculture to climate change [4]. 

Thus, this work is relevant in the context of the search for innovative methods in 

agriculture that can improve productivity, optimize resource use and contribute to solving 
global food security problems [5]. 

2 Materials and methods 

To conduct the study, data on various soil indicators such as density, moisture, pH level, 

nitrogen, phosphorus, potassium and other parameters collected from various soil samples 

was used. The raw data went through a preprocessing process that in-cluded removing 

outliers, normalizing values, and converting the data into a format convenient for analysis. 

To prepare the data for classification, label encoding methods such as LabelEncoder and 
OneHotEncoder were used to convert the categorical labels into a numeric format. Features 

were scaled using the Min-Max Scaling method to ensure data homogeneity and improve 

model performance. The data was split into training and test sets using train_test_split for 

subsequent model training and evaluation [6]. 

The study selected variational quantum algorithm (VQC) to classify soil samples. 

Quantum feature and ansatz schemes such as ZZFeatureMap and RealAmplitudes were 

used as input to VQC. The COBYLA optimizer was chosen to configure the VQC 

parameters. The optimizer was used to minimize the loss function during model training. 
The variational quantum classifier was trained on the training set, and during the training 

process a callback mechanism was used to visualize the dynamics of changes in the loss 
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function. This approach to materials and methods allows us to systematize the research 

process and clearly demonstrate each stage of the work [7]. 

VQC (Variational Quantum Classifier) is a variational quantum learning algorithm that 

is used to classify data in quantum computing. This algorithm combines ideas from 

classical machine learning methods with quantum computing, allowing quantum 

advantages to be used in the model training process. To represent data in quantum form, a 

“feature map” is used. A feature map in quantum algorithms is a quantum circuit that 
transforms input data (classical bits) into a quantum state. In Qiskit, ZZFeatureMap is one 
of the feature map types that is used to represent input data in quantum form. Let's describe 

its mathematical form [8]. 

Let us have a vector of input features X of dimension n : 1 2( , ,..., )nX x x x
. Feature 

map ZZFeatureMap creates a quantum state using the following formula: 
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Where Z is a Pauli Z gate, and  i  are parameters that can be optimized (Figure 1). 

Thus, each input feature  ix
is converted into a rotation around an axis   Z  with the 

corresponding parameter i . These operations interfere with each other, creating a quantum 

state that represents the input data. Visually, feature_map.decompose().draw(output="mpl", 

fold=20) indicates that the quantum circuit will be divided into blocks, and each block will 
be folded in the graphical representation for better readability. The fold=20 parameter 

determines how many circuit elements will be folded into one line for graphical 

representation [9]. 

Quantum circuit and ansatz are two terms that are often used in quantum compu-ting, 

and they refer to different aspects of quantum programming. A quantum circuit is a 

sequence of quantum gates and operations that model quantum computing. Gates are 

elements that can perform transformations on qubits. Quantum circuits are used to build 

algorithms and solve problems in quantum computing. They are the basic elements of 
quantum programming and represent the quantum analogue of classical digital circuits. 

Ansatz is a parameterized quantum circuit used in quantum machine learning and 

optimization algorithms. It is a form of wave function representation using parameters that 

can be tuned during training. Ansatz are used in variational quantum learning (VQE) 

algorithms, where the parameters of the ansatz are tuned to minimize the energy of the 

system. They are also used in other quantum machine learning tasks. RealAmplitudes and 

ZZFeatureMap are examples of ansatians [10-14]. 
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Fig. 1. Visualization of a quantum circuit used to convert classical features into quantum form. 

RealAmplitudes are a group of single-qubit rotations repeated on each qubit. Here's how 

to describe this ansatz in more detail (Figure 2): 

Let ij
 denote the parameter angle for the i -th qubit and the j -th rotation block. Then 

RealAmplitudes with num_qubits qubits and reps rotation blocks looks like this [15-17]: 
 

y 0,1 y 1,1 y _ 1,1

y 0, y 1, y _ 1,

RealAmplitudes( )=R ( ) R ( ) ... R ( ) ....

R ( ) R ( ) ... R ( ),

num qubits

reps reps num qubits reps

   

  




    

   
 

 

Where yR ( )
is rotation around an axis Y  with angle  . 
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Fig. 2. A group of single-qubit rotations repeated on each qubit. 

In quantum computing, rotation around an axis   is represented by a matrix: 
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(2) 

 

The notation  y 0,1 y 1,1R ( ) R ( ) 
is the tensor product of two rotation operators around 

an axis Y with angles  0,1
 and 1,1

respectively. The tensor product of operators acts on the 

spaces of two qubits and produces an operator that acts on the tensor product of the states of 

these two qubits. The matrix representation of this tensor product can be written as a block 

matrix: 
 

y 0,1

y 0,1 y 1,1

y 1,1

R ( ) 0
R ( ) R ( )

0 R ( )


 


 

   
    

(3) 

 

Where: y 0,1R ( )
- rotation operator around an axis Y with angle 0,1

; y 1,1R ( )
- rotation 

operator around an axis Y with angle 1,1
; 0  - matrix of zeros. 

Thus,  y 0,1 y 1,1R ( ) R ( ) 
 represents an operator that acts on the space obtained from 

the tensor product of the spaces of two qubits, and applies the corresponding rotation 

operations to each of the qubits. Each rotation block represents a single time step in the 

optimization algorithm and includes parameter angles for each qubit. The repetition of 

blocks creates an ansatz structure that can be used in quantum learning algorithms such as 

the Variational Quantum Classifier (VQC). 

Thus, quantum circuit is a more general term representing the sequence of opera-tions 
in quantum computing, while ansatz is a specific kind of quantum circuit used for specific 

tasks, especially in the context of quantum machine learning. Our exam-ple uses 

ZZFeatureMap, which creates a parameterized quantum circuit to represent the input data. 

During the training process, VQC minimizes a cost function that measures the difference 

between the predicted and actual data labels. In your exam-ple, COBYLA was used as an 

optimizer to tune the ansatz parameters. The VQC algorithm uses quantum evolution to 

transform the input data using an ansatz and feature map. The resulting quantum system is 

used to predict class labels for new data. 
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3 Results and Discussion 

In the source data, the 'fertility' column contains text values such as 0 and 1. However, 

seaborn pairplot expects numeric values for color labels. To convert text labels into 

numbers, use LabelEncoder from the sklearn library. This code converts the text values 

'fertility' into numbers (eg 0 and 1). After converting 'fertility' to a number format, we use 

seaborn to create a pairplot. Now that 'fertility' is represented by numerical values, you can 

better explore the relationships between different traits and how they relate to fertility levels 

(Figure 3). 
 

 

Fig. 3. Relationship between different characteristics. 

The results of using the SVM (support vector machine) algorithm to estimate soil 

fertility will depend on the specific data, model parameters and task. However, in general, 
SVM can provide the following results: 

Precision reflects how many of the classified fertile or infertile soils actually belong to 

those classes, while recall measures the model's ability to correctly classify all input 

samples. 

Model accuracy: 0.87 

Classification report:               precision    recall  f1-score   support 

           7       1.00      1.00      1.00         3 

           9       0.50      1.00      0.67         1 
          10       0.00      0.00      0.00         1 

          11       0.00      0.00      0.00         1 

    accuracy                                   0.87         6 
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   macro avg        0.38      0.50      0.42         6 

weighted avg       0.58      0.67      0.61         6 

The model's accuracy is 0.87, which means the model correctly classified 87% of the 

samples in your dataset. 

 

 

Fig. 4. Confusion Matrix. 

The results can be further improved by optimizing VQC parameters and data pre-

processing. It is also important to validate the model on independent data sets to confirm its 
generalizability. 

Model accuracy: 1.00 

Classification report:               precision    recall  f1-score   support 

           0       1.00      1.00      1.00         3 

           1       1.00      1.00      1.00         3 

 

    accuracy                           1.00         6 

   macro avg       1.00      1.00      1.00         6 
weighted avg       1.00      1.00      1.00         6 

 

 

Fig. 5. Confusion Matrix. 

The classification report and confusion matrix indicate the high performance of the 
model in the classification task. 
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In this work, a study was conducted on the application of variational quantum algorithm 

(VQC) for the problem of assessing soil fertility. The results of the study provide 

interesting conclusions and open prospects for the further development and use of quantum 

methods in agriculture and ecology. The results show that VQC demonstrated high 

performance in the task of classifying soil samples based on their fertility. Accuracy and 

other quality metrics validate the quantum algorithm's ability to effectively separate 

samples based on their characteristics. The comparison with the classic Support Vector 

Classifier (SVC) method suggests that VQC can provide comparable or even higher 
classification accuracy. This opens up the possibility of using quantum methods in 

agriculture as a more accurate and efficient tool. One of the key aspects of successful VQC 

application is careful data preprocessing. Normalization, outlier removal, and handling of 

missing values have significant impacts on algorithm performance, highlighting the 

importance of the preliminary data analysis step. 

The results of this study challenge traditional methods for assessing soil fertility and 

point to the potential of quantum methods in this area. Future research could include 

expanding the data set, optimizing VQC parameters, and adapting the method to other 
aspects of agricultural science. However, it is worth noting that the use of quantum methods 

requires high computing power and special hardware. This creates challenges in practical 

implementation, but with the development of quantum technologies, these obstacles can be 

overcome. The adoption of technologies, such as soil fertility assessment using quantum 

methods, can have a significant impact on agriculture, optimizing resource use and 

increasing ecosystem resilience. Overall, the results of this study show the promise and 

applicability of the variational quantum algorithm in agricultural and environmental 

problems, and also indicate the need for further research and development in this area. 

4 Conclusion 

The results obtained confirm the effectiveness of VQC in the task of classifying soil 

samples and open up prospects for the use of quantum methods in agriculture and ecology. 

One of the key findings is the high classification accuracy of soil samples using VQC, 

making this method competitive with classical methods such as Support Vector Classifier 

(SVC). It is important to note that successful application of VQC requires careful data 

preprocessing, highlighting the importance of the data analysis step before using quantum 
methods. 

Despite the results achieved, it is worth noting the challenges associated with the 

computing power and availability of quantum devices. However, with growing inter-est in 

quantum technologies and the development of hardware, these obstacles can be overcome. 

Further research in this area may include expanding the data volume, optimizing the 

algorithm parameters, and adapting the method for other problems in agriculture and 

ecology. Continued work on the integration of quantum methods into agricultural science 

may lead to new methods for assessing soil fertility and optimiz-ing agricultural processes 
taking into account environmental and social aspects. In conclusion, the results of this study 

highlight the importance of the development and application of quantum methods in 

agriculture, providing new tools for improving the efficiency of natural resource use and 

achieving sustainable rural development. 
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