
Methods and tools for 
processing asynchronous events



What is asynchronous programming?

It takes time for a function to fetch data from an API. Asynchronous programming was 

devised to accommodate for the lag between when a function is called to when the value of that 

function is returned.

Without asynchronous programming, apps would spend a long time on loading screens. A 

loading screen might appear:

•When a user signs in, waiting for all their user data to be returned from the database.

•During the user experience, waiting for the data to load at each new screen.

Asynchronous programming allows a user to go about his business in an application, while 

processes run in the background, thus enhancing the user experience.



Here’s an example: Data may take long a long time to submit to a database. With asynchronous 

programming, the user can move to another screen while the function continues to execute. When a photo is 

loaded and sent on Instagram, the user does not have to stay on the same screen waiting for the photo to 

finish loading. The user can continue in the app or leave the app while the photo loads.



How asynchronous programming works

The easiest way to see how asynchronous programming works is to compare it to synchronous programming. And, 

we’ll use a yummy example.

Synchronous programming
Synchronous programming follows a strict set of sequences. When the code runs in a synchronous program, it will 

follow each step of an algorithm. It does so in order and will wait for the present operation to finish before continuing on to the 

next.

Synchronous programming follows a “Bake a cake” algorithm.

1.Measure the ingredients.

2.Mix flour, eggs, and sugar.

3.Heat oven and bake.

4.Eat.

Each step must happen in order. The ingredients must be measured, mix must be mixed, before the mix is baked. 

And, to taste like a cake, it should be baked before it is eaten. Because only one person is doing all the work, you must 

complete one task fully before starting the next.

Synchronous programming has a one-track mind. It follows the guide step by step.



Asynchronous programming

Asynchronous cake baking, by contrast, allows multiple people to be working on the task at once. One person can gather 

and measure the ingredients while another person begins mixing the ingredients together. Asynchronous programming allows 

multiple processes to be started, lets the processes do their work, and when their job is finished, it gets the result and puts it through 

the steps.

If the oven finishes heating before the cake mix is fully prepared, asynchronous programming says that is okay. 

Synchronous programming would never have started the oven without the mix having been prepared. When the mix is completed, it

sends an update to the algorithm to come back and pick up the result of the mix and push it through the process. Now, when the 

cake mix is prepared, it can be passed into a heated oven that is already heated to the right temperature, ready to bake the cake.

Unfortunately, asynchronous programming won’t help you eat your cake, but it will help get the cake down the line faster. 

The baking must still happen before you can eat it. (And, if the eater is called to eat before the cake is ready, like how the oven was 

heating before the cake mix was ready, the one eating can pace the kitchen hungrily.)



Asynchronous functions
Asynchronous functions are often found in front end applications and used particularly in 

independent, high volume, IO tasks. Front end applications benefit from its use because it enhances the flow of 

an application.

Backend processes may use asynchronous functions to run many tasks or make lots of network calls. 

In the backend, asynchronous programming allows the computer to do more, faster. It calls a lot of functions 

whose response times are indefinite and processing the results.

An example is web scraping, then storing the result in a database: the process is routine, and it 

doesn’t matter what order the results get written to the directory—they just need to have a file name.



The typical function is written with the async/await 
combo.

async function foo() {
const value = await somePromise();
return value;

}

Asynchronous methods must return either 
void or an implementation of the Future<V> interface. 
Asynchronous methods that return void can't declare 
application exceptions, but if they return Future<V>, 
they may declare application exceptions. For example:

@Asynchronous
public Future<String> processPayment(Order order) 
throws PaymentException { ... }

@WebServlet(urlPatterns={"/syncservlet"})
public class SyncServlet extends HttpServlet {

private MyRemoteResource resource;
@Override
public void init(ServletConfig config) {

resource = MyRemoteResource.create("config1=x,config2=y");
}

@Override
public void doGet(HttpServletRequest request, 

HttpServletResponse response) {
response.setContentType("text/html;charset=UTF-8");
String param = request.getParameter("param");
String result = resource.process(param);
/* ... print to the response ... */

}
}



@WebServlet(urlPatterns={"/syncservlet"})
public class SyncServlet extends HttpServlet {

private MyRemoteResource resource;
@Override
public void init(ServletConfig config) {

resource = 
MyRemoteResource.create("config1=x,config2=y");

}

@Override
public void doGet(HttpServletRequest request, 

HttpServletResponse response) {
response.setContentType("text/html;charset=UTF-

8");
String param = request.getParameter("param");
String result = resource.process(param);
/* ... print to the response ... */

}
}

@WebServlet(urlPatterns={"/asyncservlet"}, asyncSupported=true)
public class AsyncServlet extends HttpServlet {

/* ... Same variables and init method as in SyncServlet ... */

@Override
public void doGet(HttpServletRequest request, 

HttpServletResponse response) {
response.setContentType("text/html;charset=UTF-8");
final AsyncContext acontext = request.startAsync();
acontext.start(new Runnable() {

public void run() {
String param = acontext.getRequest().getParameter("param");
String result = resource.process(param);
HttpServletResponse response = acontext.getResponse();
/* ... print to the response ... */
acontext.complete();

}
}



Asynchronous tools

 Netbeans

 Android Studio

 Pinpoint

 Junit

 SonarQube

 Maven

 Gradle

 Jenkins

 Spotbugs

 Spring

 Spark

 Tomcat



Maven

Maven is a project management tool for Java projects. Maven stores your project's build, reporting, and 

docs in one central place. It favors convention over configuration, which means that it's opinionated and requires 

you to follow a standard way of building projects using clear definitions.

An alternative to Maven is Ant. Ant isn't opinionated and, as a result, is more flexible in its 

configuration. However, this means that developers need to write all commands by themselves. Unless your 

project has an unusual build structure, Maven is the easier way to go.

https://ant.apache.org/


Common use cases
The most common use of the asynchronous function is to make a call to an API. Because network times 

and retrievals are uncertain, asynchronous functions say, “Get me the data from a website (or REST API), and when 

it gets here, insert that fetched data back into my script.”

Async functions are used to:

•Interact with an API

•Slow down an application’s UX

They can also be used to create delays in a user’s activity. Why would you want to slow down an app? 

Because computers can do things incredibly fast, and, when executed, it is jarring to a user.

So, designers intentionally slow down the application. A message can be sent almost instantly to 

another user. Often, the loading circle is not a necessary circle saying the message is taking time to send. Instead, 

it’s there because it helps a user understand what is going on and feel more comfortable using the app.

Yes, sometimes it takes a message a couple seconds to send because of network delays. Encoding a 

message will also take a little bit of time to happen on a user’s device before it is sent over a network.

Items on the screen can appear and disappear instantly, and it is through animations that helps a user 

follow what is happening on the screen. Animations can be asynchronous because, while they perform their 

operation over a period of time, other functions can be operating in the background.

https://www.bmc.com/blogs/rest-vs-crud-whats-the-difference/


When to use asynchronous functions

Asynchronous is not always the best way to go. Asynchronous programs add more 

complexity and make the code more unreadable. 

Young programmers will often use async functions too much because they think it 

acts as a safeguard to ensure their code works at run-time. A general rule for when to use async 

functions:

•Good for: Tasks that may take a while; high iteration.

•Bad for: Simplicity.



Conclusion

Asynchronous loops are necessary when there is a large number of iterations involved or 

when the operations within the loop are complex. But for simple tasks like iterating 

through a small array, there is no reason to overcomplicate things by using a complex 

recursive function. A simple synchronous for/while loop works just fine, and will also be 

faster and more readable.


