
Time Planning in RTS



Real-time systems are systems that carry real-time tasks. These tasks need to 

be performed immediately with a certain degree of urgency. In particular, 

these tasks are related to control of certain events (or) reacting to them. Real-

time tasks can be classified as hard real-time tasks and soft real-time tasks.

A hard real-time task must be performed at a specified time which could 

otherwise lead to huge losses. In soft real-time tasks, a specified deadline can 

be missed. This is because the task can be rescheduled (or) can be completed 

after the specified time.



In real-time systems, the scheduler is considered as the most important 

component which is typically a short-term task scheduler. The main focus of 

this scheduler is to reduce the response time associated with each of the 

associated processes instead of handling the deadline.

If a preemptive scheduler is used, the real-time task needs to wait until its 

corresponding tasks time slice completes. In the case of a non-preemptive 

scheduler, even if the highest priority is allocated to the task, it needs to wait 

until the completion of the current task. This task can be slow (or) of the 

lower priority and can lead to a longer wait.



A better approach is designed by combining both preemptive and non-

preemptive scheduling. This can be done by introducing time-based 

interrupts in priority based systems which means the currently running 

process is interrupted on a time-based interval and if a higher priority 

process is present in a ready queue, it is executed by preempting the current 

process.

Based on schedulability, implementation (static or dynamic), and the result 

(self or dependent) of analysis, the scheduling algorithm are classified as 

follows.



Static table-driven approaches:

These algorithms usually perform a static analysis associated with 

scheduling and capture the schedules that are advantageous. This 

helps in providing a schedule that can point out a task with which the 

execution must be started at run time.

Static priority-driven preemptive approaches:

Similar to the first approach, these type of algorithms also uses static 

analysis of scheduling. The difference is that instead of selecting a 

particular schedule, it provides a useful way of assigning priorities 

among various tasks in preemptive scheduling.



Dynamic planning-based approaches:

Here, the feasible schedules are identified dynamically (at run time). 

It carries a certain fixed time interval and a process is executed if and 

only if satisfies the time constraint.

Dynamic best effort approaches:

These types of approaches consider deadlines instead of feasible 

schedules. Therefore the task is aborted if its deadline is reached. 

This approach is used widely is most of the real-time systems.



Firm Real-time Tasks:

Firm real-time tasks are such type of real-time tasks which are 

associated with time bound and the task need to produce the result 

within the deadline. Although firm real-time task is different from 

hard real-time task as in hard real-time once deadline is crossed and 

task is not completed, system fails but in case of firm real-time task 

even after the passing of deadline, system does not fail.

Example:

1. Video conferencing;

2. Satellite based tracking.



Soft Real-time Tasks:

Soft real-time tasks are such type of real-time tasks which are also 

associated with time bound but here timing constraints are not 

expressed as absolute values. In soft real-time tasks, even after the 

deadline result is not considered incorrect and system failure does 

not occur.

Example:

1. Web browsing;

2. Railway Ticket Reservation.





Least Slack Time (LST) is a dynamic priority-driven scheduling 

algorithm used in real-time systems.

In LST, all the tasks in the system are assigned some priority 

according to their slack time. The task which has the least slack time 

has the highest priority and vice versa.

Priorities to the tasks are assigned dynamically.

Slack time can be calculated using the equation:

slack_time = (D – t – e’)

Here D : Deadline of the task

t : Real time when the cycle starts.

e’ : Remaining Execution Time of the task.



It is a complex algorithm, and that is why it requires extra information like 
execution times and deadlines. Least Slack Time scheduling algorithm works 
optimally only when preemption is allowed. It can produce a feasible schedule 
if and only if a feasible schedule exists for the set of tasks that are runnable.

It is different from the Earliest Deadline First because it requires execution 
times of the task which are to be scheduled. Hence it is sometimes impractical 
to implement the Least Slack Time scheduling algorithm because the burst time 
of the tasks in real-time systems is difficult to predict.

Unlike EDF (Earliest Deadline First) scheduling algorithm, LST may under-utilize 
the CPU, thus decreasing the efficiency and throughput.
If two or more tasks which are ready for execution in LST, and the tasks have the 
same slack time or laxity value, then they are dispatched to the processor 
according to the FCFS (First Come First Serve) basis.



• At time t=0: Only task T1, has arrived. T1 is executed till time t=4.

• At time t=4: T2 has arrived.

Slack time of T1: 33-4-6=23

Slack time of T2: 28-4-3=21

Hence T2 starts to execute till time t=5 when T3 arrives.



• At time t=5:

Slack Time of T1: 33-5-6=22

Slack Time of T2: 28-5-2=21

Slack Time of T3: 29-5-10=12

Hence T3 starts to execute till time t=13

• At time t=13:

Slack Time of T1: 33-13-6=14

Slack Time of T2: 28-13-2=13

Slack Time of T3: 29-13-2=14

Hence T2 starts to execute till time t=15

• At time t=15:

Slack Time of T1: 33-15-6=12

Slack Time of T3: 29-15-2=12

Hence T3 starts to execute till time t=16

• At time t=16:

Slack Time of T1: 33-16-6=11

Slack Time of T3:29-16-=12

Hence T1 starts to execute till time t=18 and so on..




