
REAL-TIME OPERATING 

SYSTEMS



CONTENTS

 Introduction

General Purpose Operating System

Non-Real-Time systems

RTOS

Types of RTOS

Basic Functions of RTOS kernel

RTOS Categories

RT Linux: an example

Conclusion 



GENERAL PURPOSE OPERATING SYSTEM

 An interface between users and hardware

 Controlling and allocating memory

 Controlling input and output devices

 Managing file systems

 Facilitating networking



NON-REAL-TIME SYSTEMS

 Non-Real-Time systems are the operating systems most 

often used

 No guaranteed worst case  scheduling jitter

 System load may result in delayed interrupt response

 System response is strongly load dependent

 System timing is a unmanaged resource



WHAT IS A RTOS ??

 RTOS is a pre-emptive multitasking operating system intended 

for real-time applications

 Predictable OS timing behavior

 Able to determine task’s completion time 

 A system of priority inheritance has to exist

 Guarantees task completion at a set deadline.



TYPES OF RTOS

 Soft Real-Time system

 Hard Real-Time system



Soft Real-Time system

 The soft real-time definition allows for frequently missed 

deadlines

 If the system fails to meet the deadline, possibly more than 

once ,the system is not considered to have failed

 Example : Multimedia streaming , Video games



HARD REAL-TIME SYSTEM

 A hard real-time system guarantees that real-time tasks be 

completed within their required deadlines

 Failure to meet a single deadline may lead to a critical system 

failure

 Examples: air traffic control , vehicle subsystems control, 

medical systems



BASIC FUNCTIONS OF RTOS KERNEL

 Task Management

 Interrupt handling 

 Memory management 

 Exception handling

 Task synchronization

 Task scheduling

 Time management



TASK MANAGEMENT

 Tasks are implemented as threads in RTOS

 Have timing constraints for tasks

 Each task a triplet: (execution time, period, deadline)

 Can be initiated any time during the period



TASK STATES

 Idle : task has no need for computer time

 Ready : task is ready to go active, but waiting for processor time

 Running : task is executing associated activities

 Waiting : task put on temporary hold to allow lower priority task 

chance to execute

 suspended: task is waiting for resource



INTERRUPT HANDLING



INTERRUPT HANDLING

 Types of interrupts

 Asynchronous or hardware interrupt

 Synchronous or software interrupt 

 Very low Interrupt latency

 The ISR of a lower-priority interrupt may be blocked by the ISR of a 

high-priority



MEMORY MANAGEMENT 

 RTOS may disable the support to the dynamic block allocation

 When a task is created the RTOS simply returns an already initialized 

memory location

 when a task dies, the RTOS returns the memory location to the pool

 No virtual memory for hard RT tasks



EXCEPTION HANDLING

 Exceptions are triggered by the CPU in case of an error

 E.g. : Missing deadline, running out of memory, timeouts, deadlocks, divide 

by zero, etc.

 Error at system level, e.g. deadlock

 Error at task level, e.g. timeout



EXCEPTION HANDLING

 Standard techniques:

 System calls with error code

 Watch dog

 Fault-tolerance

 Missing one possible case may result in disaster



TASK SYNCHRONIZATION

 Semaphore

 Mutex

 Spinlock

 Read/write locks



TASK SCHEDULING

 Scheduler is responsible for time-sharing of CPU among tasks

 Priority-based Preemptive Scheduling

 Rate Monotonic Scheduling

 Earliest Deadline First Scheduling

 Round robin scheduling 



 Priority-based Preemptive Scheduling

 Assign each process a priority

 At any time, scheduler runs highest priority process ready to run

 Rate Monotonic Scheduling

 A priority is assigned based on the inverse of its period

 Shorter execution periods = higher priority

 Longer execution periods = lower priority

TASK SCHEDULING



TASK SCHEDULING

 Earliest Deadline First Scheduling

 Priorities are assigned according to deadlines

 The earlier the deadline, the higher the priority

 Priorities are dynamically chosen

 Round robin scheduling 

 Designed for time-sharing systems

 Jobs get the CPU for a fixed time

 Ready queue treated as a circular buffer

 Process may use less than a full time slice



EXAMPLE OF TASK SCHEDULING (RR)



TIME MANAGEMENT

 Time interrupt : A high resolution hardware timer is programmed to 

interrupt the processor at fixed rate

 Each time interrupt is called a system tick

 The tick may be chosen according to the given task parameters



EXISTING RTOS CATEGORIES

 Priority based kernel for embbeded applications 

 VxWorks, OSE, QNX

 Real Time Extensions of existing time-sharing OS

 Real time Linux , Real time NT

 Research RT Kernels

 MARS, Spring



RT Linux: an example

 RT-Linux is an operating system, in which a small real-time

kernel co-exists with standard Linux kernel

Non RT Kernel



RT Linux Kernel



Conclusion

 RTOS is an OS for response time controlled and event controlled 

processes. The processes have predicable latencies and execute by 

pre-emptive scheduling

 An RTOS is an OS for the systems having the hard or soft real timing 

constraints and deadline on the tasks



Thank you…!!!


