
REAL-TIME OPERATING

SYSTEMS

CONTENTS

 Introduction

General Purpose Operating System

Non-Real-Time systems

RTOS

Types of RTOS

Basic Functions of RTOS kernel

RTOS Categories

RT Linux: an example

Conclusion

GENERAL PURPOSE OPERATING SYSTEM

 An interface between users and hardware

 Controlling and allocating memory

 Controlling input and output devices

 Managing file systems

 Facilitating networking

NON-REAL-TIME SYSTEMS

 Non-Real-Time systems are the operating systems most

often used

 No guaranteed worst case scheduling jitter

 System load may result in delayed interrupt response

 System response is strongly load dependent

 System timing is a unmanaged resource

WHAT IS A RTOS ??

 RTOS is a pre-emptive multitasking operating system intended

for real-time applications

 Predictable OS timing behavior

 Able to determine task’s completion time

 A system of priority inheritance has to exist

 Guarantees task completion at a set deadline.

TYPES OF RTOS

 Soft Real-Time system

 Hard Real-Time system

Soft Real-Time system

 The soft real-time definition allows for frequently missed

deadlines

 If the system fails to meet the deadline, possibly more than

once ,the system is not considered to have failed

 Example : Multimedia streaming , Video games

HARD REAL-TIME SYSTEM

 A hard real-time system guarantees that real-time tasks be

completed within their required deadlines

 Failure to meet a single deadline may lead to a critical system

failure

 Examples: air traffic control , vehicle subsystems control,

medical systems

BASIC FUNCTIONS OF RTOS KERNEL

 Task Management

 Interrupt handling

 Memory management

 Exception handling

 Task synchronization

 Task scheduling

 Time management

TASK MANAGEMENT

 Tasks are implemented as threads in RTOS

 Have timing constraints for tasks

 Each task a triplet: (execution time, period, deadline)

 Can be initiated any time during the period

TASK STATES

 Idle : task has no need for computer time

 Ready : task is ready to go active, but waiting for processor time

 Running : task is executing associated activities

 Waiting : task put on temporary hold to allow lower priority task

chance to execute

 suspended: task is waiting for resource

INTERRUPT HANDLING

INTERRUPT HANDLING

 Types of interrupts

 Asynchronous or hardware interrupt

 Synchronous or software interrupt

 Very low Interrupt latency

 The ISR of a lower-priority interrupt may be blocked by the ISR of a

high-priority

MEMORY MANAGEMENT

 RTOS may disable the support to the dynamic block allocation

 When a task is created the RTOS simply returns an already initialized

memory location

 when a task dies, the RTOS returns the memory location to the pool

 No virtual memory for hard RT tasks

EXCEPTION HANDLING

 Exceptions are triggered by the CPU in case of an error

 E.g. : Missing deadline, running out of memory, timeouts, deadlocks, divide

by zero, etc.

 Error at system level, e.g. deadlock

 Error at task level, e.g. timeout

EXCEPTION HANDLING

 Standard techniques:

 System calls with error code

 Watch dog

 Fault-tolerance

 Missing one possible case may result in disaster

TASK SYNCHRONIZATION

 Semaphore

 Mutex

 Spinlock

 Read/write locks

TASK SCHEDULING

 Scheduler is responsible for time-sharing of CPU among tasks

 Priority-based Preemptive Scheduling

 Rate Monotonic Scheduling

 Earliest Deadline First Scheduling

 Round robin scheduling

 Priority-based Preemptive Scheduling

 Assign each process a priority

 At any time, scheduler runs highest priority process ready to run

 Rate Monotonic Scheduling

 A priority is assigned based on the inverse of its period

 Shorter execution periods = higher priority

 Longer execution periods = lower priority

TASK SCHEDULING

TASK SCHEDULING

 Earliest Deadline First Scheduling

 Priorities are assigned according to deadlines

 The earlier the deadline, the higher the priority

 Priorities are dynamically chosen

 Round robin scheduling

 Designed for time-sharing systems

 Jobs get the CPU for a fixed time

 Ready queue treated as a circular buffer

 Process may use less than a full time slice

EXAMPLE OF TASK SCHEDULING (RR)

TIME MANAGEMENT

 Time interrupt : A high resolution hardware timer is programmed to

interrupt the processor at fixed rate

 Each time interrupt is called a system tick

 The tick may be chosen according to the given task parameters

EXISTING RTOS CATEGORIES

 Priority based kernel for embbeded applications

 VxWorks, OSE, QNX

 Real Time Extensions of existing time-sharing OS

 Real time Linux , Real time NT

 Research RT Kernels

 MARS, Spring

RT Linux: an example

 RT-Linux is an operating system, in which a small real-time

kernel co-exists with standard Linux kernel

Non RT Kernel

RT Linux Kernel

Conclusion

 RTOS is an OS for response time controlled and event controlled

processes. The processes have predicable latencies and execute by

pre-emptive scheduling

 An RTOS is an OS for the systems having the hard or soft real timing

constraints and deadline on the tasks

Thank you…!!!

