
Real-Time System Design

in UML

Real Time System ?

 System that maintain an ongoing timely interaction with its environment?

- The Unified Modeling Language (UML) is a general-purpose,

developmental modeling language in the field of software engineering that is

intended to provide a standard way to visualize the design of a system.

 Logical view diagrams

 class diagram

 collaboration deployment

 sequence charts

 state diagrams

 Logical view modeling elements

 classes

 relationships

 packages

Modelling RTS in UML

 A system will be modelled as multiple communicating active objects

(capsules)

 System behavior will be modeled through the state machines of the

capsules

 Capsules can only communicate by sending messages through their ports

 Communication between ports is defined by a protocol

 Messages control(trigger) the transitions in the receiving capsule’s state

machine

Capsule
 Based upon a common pattern found in RTS: active object

 Ultra light weight concurrency

 Run to completion

 Executable

 Fundamental modeling element

 A stereotype of a UML class

 Has attributes

 Has operations

 Has a state machine

 Has ports

Capsule vs class (1)

 Class

 Contain public, protected, or private attributes and operations

 Capsule

 Contain only protected or private operations and attributes

Capsule vs Class (2)

 Class

 Communicate by calling operations on other classes

 Capsule

 Communicate by sending messages (signals) through contained ports

Capsule vs Class (3)

 Class

 Elemental behavior is specified by operations

 Capsule

 Elemental behavior is specified by a capsule’s state machine

Capsule vs Class (4)

 Class

 system behavior is expressed as a group of collaborating objects

 Capsule

 system behavior is expressed as a sequence of inter-capsule messages

Capsule Role

 An instance of a capsule class

 Changes to the role only affect the role not the class

 Has cardinality

 Strongly owned by the containing capsule

 Composition – fixed role

 Aggregation – optional or plug-in

PORT (1)

 Isolates a capsule’s implementation

 The means by which capsules communicate

 Send and receive messages

 Are owned by the capsule instance

 Created and receive messages

Port 2

 Defines a capsule interface

 Is a protocol role

 An instance of a protocol

 Only compatible ports may communicate

 All ports have a “send” operation

 port1.myMessage().send()

Protocol (1)
 Contract between capsules

 A specification of a set of messages received (in) and sent (out) from the port

 Defines the port type

 recall port compatibility

 A stereotype of a UML collaboration

Protocol (2)

 Each capsule role typically has an associated protocol for every other

capsule role with which it associates

 Defines the services one capsule role provides another

 A set of signals (and associated data) required to perform the capsule

role’s job

Capsule Structure Diagrams

 Visually defines the structure of a capsule

 Stereotype of a UML collaboration diagram

 Protocols not visible (only their instances – ports)

 Provides the support necessary to add “code generation”

Summary

Overview of a real-time UML modelling

 A system will be modelled as multiple communicating capsules

 System behavior will be modeled through the state machines of the

capsules

 Capsules can only communicate by sending messages through their ports

 Communication between ports is defined by a protocol

 Message control (trigger) the transitions in receiving capsule’s state

machine.

