
Dynamic Priority
Scheduling Algorithm

Content

◎ Priority Scheduling
◎ Non-Preemptive Scheduling
◎ Preemptive Scheduling

◎ Dynamic priority scheduling
◎ Earliest Deadline First
◎ Least Slack Time
◎ Difference between EDF and LST

Priority Scheduling

◎ In priority scheduling, each process has a priority which is an integer value assigned to it.
The smallest integer is considered as the highest priority and the largest integer is
considered as the lowest priority. The process with the highest priority gets the CPU first.

◎ In rare systems, the largest number might be treated as the highest priority also so it all
depends on the implementation.

◎ If priorities are internally defined then some measurable quantities such as time limits,
memory requirements, the number of open files and the ratio of average I/O burst to average
CPU burst are used to compute priorities.
External priorities are assigned on the basis of factors such as the importance of process, the
type and amount of funds been paid for computer use, the department sponsoring of the
work, etc.

Priority Preemptive Scheduling :

◎ Sometimes it is important to execute higher priority tasks immediately even
when a task is currently being executed. For example, when a phone call is
received, the CPU is immediately assigned to this task even if some other
application is currently being used. This is because the incoming phone call has
a higher priority than other tasks. This is a perfect example of priority
preemptive scheduling. If a task with higher priority than the current task being
executed arrives then the control of the CPU is taken from the current task and
given to the higher priority task.

4

Priority Non-Preemptive Scheduling :
◎ Unlike priority preemptive scheduling, even if a task with higher priority does

arrive, it has to wait for the current task to release the CPU before it can be
executed. It is often used in various hardware procedures such as timers, etc.

Dynamic priority scheduling

◎ Dynamic priority scheduling is a type of scheduling algorithm in which the
priorities are calculated during the execution of the system. The goal of dynamic
priority scheduling is to adapt to dynamically changing progress and to form an
optimal configuration in a self-sustained manner. It can be very hard to produce
well-defined policies to achieve the goal depending on the difficulty of a given
problem.

◎ Earliest deadline first scheduling and Least slack time scheduling are examples of
Dynamic priority scheduling algorithms.

5

https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
https://en.wikipedia.org/wiki/Least_slack_time_scheduling

6

EDF
Earliest Deadline First

Earliest Deadline First (EDF)

◎ Earliest Deadline First (EDF) is an optimal dynamic priority scheduling algorithm used in
real-time systems.
It can be used for both static and dynamic real-time scheduling.

◎ EDF uses priorities to the jobs for scheduling. It assigns priorities to the task according to the
absolute deadline. The task whose deadline is closest gets the highest priority. The
priorities are assigned and changed in a dynamic fashion. EDF is very efficient as compared
to other scheduling algorithms in real-time systems. It can make the CPU utilization to about
100% while still guaranteeing the deadlines of all the tasks.

◎ EDF includes the kernel overload. In EDF, if usage is less than 100%, then it means
that all the tasks have met the deadline. EDFthe CPU finds an optimal feasible
schedule. The feasible schedule is one in which all the tasks in the system are
executed within the deadline. If EDF is not able to find a feasible schedule for all the
tasks in the real-time system, then it means that no other task scheduling algorithms
in real-time systems can give a feasible schedule. All the tasks which are ready for
execution should announce their deadline to EDF when the task becomes runnable.

◎ EDF scheduling algorithm does not need the tasks or processes to be periodic and also
the tasks or processes require a fixed CPU burst time. In EDF, any executing task can be
preempted if any other periodic instance with an earlier deadline is ready for execution
and becomes active. Preemption is allowed in the Earliest Deadline First scheduling
algorithm.

8

Example:

◎ Consider two processes P1 and P2.

◎ Let the period of P1 be p1 = 50, Let the processing time of P1 be t1 = 25

◎ Let the period of P2 be period2 = 75, Let the processing time of P2 be t2 = 30

9

◎ Steps for solution:

◎ Deadline pf P1 is earlier, so priority of P1>P2.

◎ Initially P1 runs and completes its execution of 25 time.

◎ After 25 times, P2 starts to execute until 50 times, when P1 is able to execute.

◎ Now, comparing the deadline of (P1, P2) = (100, 75), P2 continues to execute.

◎ P2 completes its processing at time 55.

◎ P1 starts to execute until time 75, when P2 is able to execute.

◎ Now, again comparing the deadline of (P1, P2) = (100, 150), P1 continues to execute.

◎ Repeat the above steps…

◎ Finally at time 150, both P1 and P2 have the same deadline, so P2 will continue to execute till
its processing time after which P1 starts to execute.

10

11

LST
Least Slack Time

Least Slack Time (LST)

◎ Least Slack Time (LST) is a dynamic priority-driven scheduling algorithm used in real-time
systems.

◎ In LST, all the tasks in the system are assigned some priority according to their slack time. The
task which has the least slack time has the highest priority and vice versa.

◎ Priorities to the tasks are assigned dynamically.

◎ Slack time can be calculated using the equation:

◎ Here D : Deadline of the task
t : Real time when the cycle starts.
e’ : Remaining Execution Time of the task.

◎ The task which has the minimal slack time is dispatched to the CPU for its execution as it has
the highest priority.

slack_time = (D - t - e')

◎ It is a complex algorithm, and that is why it requires extra information like execution times
and deadlines. Least Slack Time scheduling algorithm works optimally only when
preemption is allowed. It can produce a feasible schedule if and only if a feasible schedule
exists for the set of tasks that are runnable.

◎ It is different from the Earliest Deadline First because it requires execution times of the task
which are to be scheduled. Hence it is sometimes impractical to implement the Least Slack
Time scheduling algorithm because the burst time of the tasks in real-time systems is difficult
to predict.

◎ Unlike EDF (Earliest Deadline First) scheduling algorithm, LST may under-utilize the CPU, thus
decreasing the efficiency and throughput.

◎ If two or more tasks which are ready for execution in LST, and the tasks have the same slack
time or laxity value, then they are dispatched to the processor according to the FCFS (First
Come First Serve) basis.

13

Example:◎ At time t=0: Only task T1, has arrived. T1 is executed till time t=4.

◎ At time t=4: T2 has arrived.
Slack time of T1: 33-4-6=23
Slack time of T2: 28-4-3=21
Hence T2 starts to execute till time t=5 when T3 arrives.

◎ At time t=5:
Slack Time of T1: 33-5-6=22
Slack Time of T2: 28-5-2=21
Slack Time of T3: 29-5-10=12
Hence T3 starts to execute till time t=13

◎ At time t=13:
Slack Time of T1: 33-13-6=14
Slack Time of T2: 28-13-2=13
Slack Time of T3: 29-13-2=14
Hence T2 starts to execute till time t=15

◎ At time t=15:
Slack Time of T1: 33-15-6=12
Slack Time of T3: 29-15-2=12
Hence T3 starts to execute till time t=16

◎ At time t=16:
Slack Time of T1: 33-16-6=11
Slack Time of T3:29-16-=12
Hence T1 starts to execute till time t=18 and so on..

14

15

EDF LST

Task having shortest deadline is scheduled first in

it.

Task having minimum slack time is scheduled

first in it.

It assigns priority to tasks according to their

deadlines.

It assigns tasks according to their slack time.

It can be used as both static and dynamic

scheduling.

It is used only as dynamic scheduling.

Execution time of a task is not required. It requires execution time of a task.

It is a simple and optimal algorithm. It is a complex algorithm.

It can be implemented on any set of tasks. It can only be implemented on set of tasks having

their burst time.

It completely utilizes the CPU (even sometimes

100%).

It may under-utilize the CPU.

It increases the efficiency and throughput of the

processor.

It may decrease the efficiency and throughput of

the processor.

Thank you
for you

attention

16

