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Abstract. In the paper the quantum computation language used in solving quantum algorithms, its operators,
and the principles of solving using the Deutsch algorithm are described. The basic principles, physical and
algorithmic interpretations of quantum processes are taken into account. On the basis of these processes, the
classification of the algorithm used in the analysis of the system in search of effective solutions to the problems
of global optimization and rational management of unexpected situations is presented.
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1 Introduction

The search for a solution to the problem of global (generally multi-dimensional) optimization is
typical for systematic analysis. The uncertainty of information and the adoption of optimal solutions
and management of complex systems in risky conditions have been evolving over the years in a
variety of areas. In recent years, new forms of intelligent computing have been used to solve this
problem.

To find a solution using a quantum algorithm, a series of quantum operators are used, changing
the initial state according to the purpose of the initial superposition.

In traditional conventional programming, a one-parameter function is implemented as follows:

» the parameter is placed in the incoming register;

» The commands that make up the body of the function perform some manipulations (changes)
on this parameter, and then the result is placed in the output register, where the previous state of the
parameter is lost.

In quantum programming, the last operation is impossible because it is irreversible. Instead, the
resulting bits are added to the result of dividing the output register (€5) by 2 modules. In other words,
the XOR (exceptional or) operation is performed on them. This process is obviously reversible: it is
enough to use it a second time and the memory returns to its original state [1].

2 The main part

Quantum parallelism is one of the key features of quantum computing. This feature allows
quantum computers to simultaneously calculate the function f(x) for different values of £. To describe
quantum parallelism, we consider the calculation of the function of the variable x, which is described
in the following figure.

f(x) {0, 1} - {0, 1}
In a quantum computer, the optimal way to calculate this function is to consider a two-qubit
quantum computer, and it works with the [xy> state. By applying a sequence of logical gates, you can

change the initial | xy > state to the|x, y& f (x) > stafe . Here we can say that x, y are the registers
of a quantum computer. In this case, the first register is called the data register, and the second is
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the target register. Here the variables x, yQf (x) > are represented by the unitary variable
U.

Each of them is associated with a unitary operator. That is, / f| xX,y> = | X, y®f (x) >
In such cases, the function will be in four cases: that is, in cases where f (x) =0and
f(x) =1, the function f(x) is constant, in cases where f(x)=xand f(x)=1 — x, the function
will be balanced (since it takes the values 0 and 1 in points with equal numbers) [4].

In solving this task f (O) R f (1) is regarded as a multiplex on the two modules. To calculate this
(19)+[1))
V2
In that case, if x=0and x=1
(00) —Jo)) _ (10)~[11)
N 7

If f(O) =land f(l) =1, then in the case where x =0and x =1, then the appearance of (1) is as
00) —(01
0900 g |-yl

The above two cases can be written as follows through the Urunitary variable

U, {l >%} (gl )

process |x) (1) it is enough to find solutions in the case where is f'(0) =0and f(1)=

then the appearance of (1) is as follows

2

will be.

follows |—l> will be.

V2

Here |—> = |O>_|l> we enter the sign. Now let's look at the initial case, namely |+ > ¥ |— >

Then |1//>:@|—>+—|—> will be equal. Now if we consider the UF' / w1> unitary variable, it will
be as follows. [3]

0, )=y Ly I o)

(3) from the formula it can be seen that if f (x)the function will be constant, when

(1)’ =(=1) and the result (-1)/” |+ >®|-> when there is. If f(x)is a function balanced,

when (-1)’® = —(~1)"” and the result is (-=1)""” |- > ®| - > when [2].
As can be seen from the above, when you apply M to the first bit. For a constant function |0 >
and for a balanced function |1 > 1is.

Now, let's look at the functionality we've discussed above using the QCL Quantum Computing
Language programming language.

Required descriptions:

qcl> qureg x[1]; qureg y[1]; int r;

We write out the operator Ur:

» for n = 0- f(x) = O (this operator does not perform anything);

sfor N=1-let f(x)=1;

» for N =2 —let f(x) = x;

sfor N=3 -letf(x)=1-x.

Now let's consider the following process in QCL Quantum Computing Language Programming
Language [2].
gcl> procedure U(int n, qureg X, qureg y) { if n==1 { Not(y); } /* T(x)=1 */

else { if n=2 { x->y; } /* f(X)=x */ else { if n==3 { Not(X); X->y; Not(x); }}}
/* FOO=1-x */}

After we enter this process, we will consider the following case of the Y bit />y bit/ >y:
qcl> Not(y)

Cexyusa 5. Aneopummusayus, MOOeTUpoBaHie 1 ONMUMUALUS
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[2/321 1 |0, 1>
qcl> Mix(y)
[2/32] 0.70711 [0, 0> — 0.70711 |0, 1>
Now | +> @ / —> when reviewing the status gets the following view of its result.
1> Mi
%§/§2]16F§)|0, 0> + 0.5 |1, 0> — 0.5 |0, 1> — 0.5 |1, 1>
Now we see that the appearance of the Uy operator when the Uy operator corresponding to the

function f{x)=1 is used is as follows. The result is shown in the lower row.
1> U(1,x,
%5/?2](—0¥5y?0, 0> — 0.5 |1, 0> + 0.5 [0, 1> + 0.5 |1, 1>
Proceeding from the above, X will have the following appearance when using the bit-to-bit

Adamar function.

qcl> Mix(x)

[2/32] -0.70711 |0, O> + 0.70711 |0, 1>
qcl> measure Xx,r

[2/32] -0.70711 |0, O> + 0.70711 |0, 1>
qcl> print r

0

And we get a state in which the result is zero. It can be seen that in the case of x bits |0>, of
course, the function will be constant. x bits write and print the result of the value to a variable r [2].

Now we will bring the memory back to its original state to consider how much the result of other
functions will also be, and for another function of f{x), we will repeat the above cases when f{x)=x.

Here is the operator to reset memory to 1ts orlglnal state.
qcl> reset
[2/32] 1 |0, O>
qcl> Not(y)
[2/32] 1 |0, 1>
qcl> Mix(y)
[2/32] 0.70711 |0, O> — 0.70711 |0, 1>
qcT> Mix(x)
[2/32] 0.5 |0, O> + 0.5 |1, O> — 0.5 |0, 1> — 0.5 |1, 1>
gqcl> u(2,x,y)
[2/32] 0.5 |0, O> — 0.5 |1, O> — 0.5 |0, 1> + 0.5 |1, 1>
qcl> Mix(x)
[2/32] 0.70711 |1, 0> — 0.70711 |1, 1>
qcl> measure Xx,r
[2/32] 0.70711 |1, 0> — 0.70711 |1, 1>
%c1> print r

even if f(x)=1-x, the result is a state equal to 1.
qcl> reset
[2/32] 1 |0,0>
qcl> Not(y)
[2/32] 1 |0,1>
qcl> Mix(y)
[2/32] 0.70711 |0,0> - 0.70711 |0,1>
qcl> Mix(x)
[2/32] 0.5 |0,0> + 0.5 |1,0> - 0.5 |0,1> - 0.5 |1,1>
gcl> U(3,x,y)
[2/32] -0.5 |0,0> + 0.5 |1,0> + 0.5 |0,1> - 0.5 |1,1>
gcl> Mix(x)
[2/32] -0.70711 |1,0> + 0.70711 |1,1>
qcl> measure Xx,r
[2/32] -0.70711 |1,0> + 0.70711 |1,1>
qcl> print r
1

As can be seen from the result obtained, x bits are equal to 1, then of course f(x) = x and f{x) =1 -
x functions will be balanced [1].

Next, we can write a process in which the whole algorithm of work is automated. In the process,

the parameter # uses the function f{x).

qcl> procedure Deutsch( int n)

{ reset; Not(y); Mix(y); MixOQ; /* |+> * [-> */ Un,x,y); Mix(X);
measure X,r; print r; }

qcl> Deutsch(0)

0

[2/32] 0.70711 |0, O> — 0.70711 |0, 1>
qcl> Deutsch(l)

0
[2/32] -0.70711 |0, O> + 0.70711 |0, 1>
qcl> Deutsch(2)

1
[2/32] 0.70711 |1, 0> — 0.70711 |1, 1>
qcl> Deutsch(3)

1
[2/32] -0.70711 |1, O> + 0.70711 |1, 1>
qcl> exit
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We see from this that when the algorithm is actually equal to O, the first two f (x) functions will

be balanced for the remaining two f (x):xand f (x):l—x when the constant

(f(x) =0, f(x)= 1) and the remaining two  (f(x) = x and f(x) = 1-x)[2].

3 Conclusion

In summary, in this article, the qcl (quantum computing language) language used in solving
quantum algorithms, its operator's processing processes and Deutsch's algorithm processing
principles are discussed. The basic principles of quantum processes, physical and algorithmic
interpretations were taken into account. On the basis of these processes, the classification of the
algorithm used in the analysis of the system in search of effective solutions to the problems of global
optimization and rational management of unexpected situations is presented.

Unlike the classical analog, quantum algorithm yacheyka can be performed in different classes of
universal elements, depending on the basis of the calculation used. Quantum algorithm slope
describes the evolution of some unitary operator U, corresponding to the process of quantum
computing.
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