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Abstract. A detailed analysis of the current state of the problem is 
presented in the article. A mathematical model is given to assess the 
dynamic behavior of high-rise structures, considering geometric 
nonlinearity (nonlinear dependence of strains on displacements) under 
periodic kinematic effects and the own weight of the structure. The 
unsteady forced oscillations of the high-rise flue gas stack of the Novo-
Angrenskaya HPP were studied considering the geometric dimensions of 
the stack and the physical and mechanical characteristics of the material of 

the structure. The influence of dissipation in the material, leading to rapid 
or gradual damping of vibrations depending on the frequency spectrum of 
natural vibrations in one direction or another, as well as geometric 
nonlinearity, leading to an increase in the amplitude of vibrations at a low 
energy dissipation in the structure, and resonant impact, causing significant 
displacements of the structure. The predominant effect of energy 
dissipation in the material on the pattern of the dynamic behavior of a 
high-rise structure is observed compared to geometric nonlinearity. 

1 Introduction 

High-rise flue gas stacks and cooling towers used for environmental protection are unique 

and important structures of industrial and energy complexes. Such structures are mainly 

located in seismically active regions of our country. 

Lately, insufficient attention has been paid to studying their dynamic behavior and 

strength. Therefore, it is required to develop an effective calculation method and evaluate 

these structures' dynamic behavior and strength under various impacts, considering design 

features and nonlinear strain. 

In the existing building codes of some countries, an elastic conical cantilever with a 

constant inclination is used as a calculation model for such structures. This model does not 

consider such features of structures as real geometry, design features, large strains, and 

nonlinear deformation of the material, which directly impact the value of dynamic behavior 

and strength of structures. 
In designing and constructing high-rise structures such as reinforced concrete flue gas 
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stacks, constructive solutions for structures with a variable inclination of the generatrix and 

a variable wall thickness are used.  

Generally, dynamic calculations of high-rise flue gas stacks are conducted in 

accordance with building codes and regulations, where a conical cantilever beam with a 

constant generatrix inclination is used as a design scheme. If we analyze the actual 

dimensions of the structure and the dimensions of the accepted design scheme (Fig. 1), then 

we can see a large deviation of these dimensions from each other (Table 1). This leads to 

large errors in specific calculations. 

 

 

Fig.1. Design scheme of high-rise flue gas stack: I is design scheme used; II is real geometric 
dimensions 

 
Table 1. Difference between dimensions of real structures and design schemes 

Stack elevation of 
Novo-Angrenskaya 

HPP 

Outer diameter 
according to design 

scheme - I 

Real outer diameter 
according to scheme - 

II 

Difference 
in diameters 

325 16.5 16.5 0 

275 19.5 16.5 3 

235 21.9 16.5 5.4 

190 24.6 19.2 5.4 

115 29.7 23.8 5.9 

65 32.1 28.8 3.3 

35 33.9 32.4 1.5 

0 38 38 0 

 

The question arises about the correct choice of the structure model, which allows for 
adequately reflecting the real geometry of the structure, considering the variability of the 

thickness of the annular cross-section and the inclination of the generatrix. 

Along with this, materials and structures exhibit the properties of geometric and 

physical nonlinearity even under low impacts. Moreover, if the physically nonlinear 
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deformation of the material leads to a decrease in the amplitude of forced vibrations, then in 

the case of geometrically nonlinear deformation of the structure, its increase is possible, 

especially in the resonant mode of vibrations of the structure with low dissipation. 

The nonlinear dynamics of an axisymmetric body subjected to impulsive loading were 

considered earlier in [1]. The structure's dynamic behavior was studied, taking into account 

the material's physical nonlinearity and dissipative properties. The article presents 

numerical results that show the nonlinear behavior of a body under the influence of an 

impulsive load. Mathematical models and calculation methods are given, based on the 

equations of motion of a rigid body, considering the material's physical nonlinearity. Using 

numerical methods, the oscillation characteristics and dynamic parameters of the body are 

obtained under various impulse loads. 
Recently, several publications have been published where the stress-strain state and 

dynamic behavior of high-rise structures are considered. 

These scientific articles are devoted to the following issues: 

- modeling of spatial natural vibrations of axisymmetric systems, such as cylinders, 

cones, and spheres, is considered in [2]. A new modeling method is based on the theory of 

Legendre functions and spherical harmonics, which allows calculating the spectra of natural 

frequencies and vibration modes for axisymmetric systems with arbitrary boundary 

conditions.  

- in [3], the use of dynamic dampers to reduce the vibrations of high-rise buildings was 

studied. The use of viscoelastic materials for the production of damping elements and the 

mathematical models used for their calculation are described. The simulation results 

showed that using dynamic dampers could significantly reduce the vibration amplitude of 
the building and increase its stability under conditions of strong external impacts, such as 

earthquakes [25]. 

- in [4], forced vibrations of axisymmetric bodies of a non-homogeneous structure are 

considered. A technique for modeling such bodies and analyzing their dynamic behavior in 

the presence of external influences are given. A mathematical model of an axisymmetric 

body is proposed, presented as a finite element model, considering the non-homogeneous 

properties of materials. Several numerical experiments demonstrated the proposed method's 

effectiveness for calculating forced vibrations of axisymmetric non-homogeneous systems. 

- modeling of spatial natural oscillations of viscoelastic acyclic systems is considered in 

[5]. A mathematical model of the motion of such systems is proposed, and the results of the 

numerical simulation of oscillations using the finite element method are presented. 
- in [6], the mathematical modeling of a rod protected by a system of dynamic shock 

absorbers under the action of kinematic excitations is considered. Magnetorheological 

shock absorbers are used as shock absorbers; they have variable stiffness and damping 

properties depending on the external magnetic field. A mathematical model of the rod and 

shock absorber system is presented, and its dynamic characteristics are studied under 

various kinematic excitations. 

- in [7], a study of a nonlinear dynamic analytical model of high-rise buildings subject 

to seismic excitations is presented, considering geometric nonlinearity. The article 

describes a model that considers the deviation of the structure in a plane and the 

discrepancy between displacements and rotation angles between floors. A numerical study 

of the model is conducted on the example of a 20-story building; the acceleration, and 

deformation of the building are calculated at various levels of seismic excitations, and it is 
noted that an account for geometric nonlinearity significantly affects the dynamic 

characteristics of high-rise buildings. 

- the study in [8] considers geometric nonlinearity in the dynamic analysis of tall 

buildings under the influence of wind loads. A nonlinear model is applied to analyze the 

dynamic characteristics of a 15-story building and reveal the significant influence of 
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geometric nonlinearity on the dynamic response of the building. 

- in [9], a force analogy method is presented for nonlinear dynamic analysis of tall 

buildings under the influence of seismic excitations. The method is applied to analyzing a 

76-story building, and its results are compared with those obtained using other methods. 

The study shows that the force analogy method allows for obtaining more accurate results 

in the nonlinear dynamic analysis of tall buildings. 

- in [10], a method of nonlinear seismic analysis of high-rise buildings is presented, 

considering the soil-structures interaction and geometric nonlinearity. The behavior of a 30-

story building under various seismic loads was studied, and the importance of considering 

soil conditions in the design of high-rise buildings in areas with high seismic activity was 

revealed. 
- in [11], nonlinear seismic analysis of high-rise buildings was studied, considering both 

geometric and physical nonlinearities. A numerical model was developed to study the 

behavior of high-rise buildings under seismic loads, and the influence of various parameters 

such as height-to-width ratio, structural rigidity, and earthquake intensity was investigated. 

- in [12], the influence of geometrical nonlinearity on the dynamic response of high-rise 

buildings during earthquakes is considered. A model of a building is used, considering 

nonlinear deformations, and a new method for calculating the dynamic characteristics of a 

building during an earthquake is proposed. A numerical study was carried out based on a 

building with 30 floors, analytical solutions were obtained, and a comparison of the results 

with other calculation methods was given. It is shown that geometric nonlinearity has an 

important influence on the dynamic response of a building during earthquakes, and the 

proposed method is effective in modeling such effects. 
- the study in [13] investigates the effect of geometric nonlinearity on the seismic 

response of high-rise buildings subject to random ground vibrations. Numerical modeling 

was used, and dynamic analysis of buildings was conducted, considering geometric 

nonlinearity and random seismic excitations. The results show that geometric nonlinearity 

leads to higher dynamic compliance of buildings and increased vibration amplitude. 

- in [14], applying a nonlinear analysis method for assessing the seismic behavior of tall 

buildings is considered, considering geometric and physical nonlinearity. The authors 

describe a model that shows the effects of nonlinearity in calculating the response of a 

building to seismic impact, such as the nonlinearity of the material and changes in the 

geometry of the structure under deformation. The results show that accounting for the 

nonlinearity gives more exact estimates of structure behavior under seismic impact. 
- in [15], the nonlinear dynamic behavior of tall buildings under the action of seismic 

loads was investigated, considering the geometric and physical nonlinearities. Numerical 

modeling was conducted based on the finite element approach using the OpenSees 

software. As a result of the study, data were obtained on strains, stresses, accelerations, and 

force parameters of tall buildings under various impacts. The analysis showed a significant 

influence of geometric and physical nonlinearity on the dynamic response of high-rise 

buildings, which is important in the design and construction of such objects [24]. 

- in [16], methods of nonlinear analysis of high-rise buildings were considered, 

considering the geometric and physical nonlinearity under the action of seismic loads. The 

study applied two methods of nonlinear analysis: the finite element method and the pseudo-

dynamic testing method. The study showed that accounting for nonlinearity allows for 

obtaining more accurate results than using linear analysis methods. 
- in [17], the influence of axial deformations on the dynamic response of high-rise 

buildings is studied, considering geometric nonlinearity. The authors used the finite element 

method and conducted a nonlinear analysis of several models of buildings of various 

configurations and heights. The study results showed that axial deformations affect the 

dynamic response of buildings, and an account for geometric nonlinearity is important in 
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assessing these effects. 

- the authors of [18] investigate the nonlinear dynamic response of various 

configurations of high-rise buildings to seismic loads. Two types of buildings are 

considered: rectangular and L-shaped ones. Using the finite element method and ANSYS 

software, analysis was conducted for various parameters, including the weight of the 

building, its rigidity, height, and the distance between floors. The results show that strains 

and stresses in a building increase with an increase in the building's weight, rigidity, and 

height and a decrease in the distance between floors. 

- in [21], [23],  the influence of vertical loads on the nonlinear dynamic response of 

high-rise buildings is considered, considering the geometric nonlinearity. The study uses 

the ANSYS software based on the finite element method. The article presents the results of 
numerical modeling of various types of buildings, showing that vertical loads significantly 

impact the dynamic response of buildings, and an account for geometric nonlinearity is 

important for the reliable prediction of the behavior of buildings under seismic loads. 

- in [20], the nonlinear seismic behavior of steel moment frames with beam-to-column 

connections is considered. Numerical modeling of various types of beam and column 

connections is conducted, and their seismic stability is evaluated. The study results show 

that the behavior of frames depends on the type of connection and that the correct choice of 

connection can significantly increase their seismic resistance. Particular attention is paid to 

the effect of plastic deformations, which can occur during strong earthquakes and lead to 

structure failure. 

- in [21], the nonlinear seismic behavior of tall buildings is studied, considering the 

geometric nonlinearity. Numerical simulations were performed to evaluate the influence of 
various parameters, such as column rigidity, on the dynamic response of buildings. The 

results showed that geometric nonlinearity could lead to a significant change in the dynamic 

response of the building, especially in buildings with high column rigidity. 

The above is a review of several scientific articles published over the past 15-20 years, 

which shows that each approach, when solving specific problems, has its advantages and 

disadvantages and is used in solving specific practical tasks. 

To meet the increasing requirements for the operating conditions of high-rise structures 

(stacks, cooling towers, etc.) located in areas of high seismic activity, it is necessary to 

consider the different natures of the nonlinearity and energy dissipation in the material and 

structure. 

Based on this analysis, it can be noted that today the development of mathematical 
models, solution methods, and the study of the dynamics of high-rise structures is a relevant 

and necessary problem worldwide that needs to be solved. 

2 Methods 

2.1 Mathematical model 

A high-rise structure under consideration is modeled by a rod with a straight axis, variable 

inclination, and wall thickness (Fig. 2), which oscillates due to the dynamic impact of 

different frequencies. It is assumed that the cross-sections under vibrations remain plane 

and perpendicular to the axis of the rod (structure). It is also assumed that a longitudinal 
force acts in the sections of the rod, which is the weight of the part of the structure located 

above. 

Considering the problem of vibrations of a high-rise structure, it is necessary to consider 

the nonlinear properties of the structure's material, its design features (variable cross-

section and inclination), non-uniform axial load, dynamic impact of the different frequency 
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spectrums, etc. Here we consider the nonlinearity related to large displacements of the 

structure and a significant change in its geometry, i.e., geometric nonlinearity. In this case, 

the deformations include the first derivative of the displacement and the second derivative 

 2u,u   . 

 
a) b) 

Fig.2. Calculation model of high-rise structure (a) with variable inclination and wall thickness (b) 

 

Accounting for any type of nonlinearity complicates the exact solution to the problem 

for a rod structure, especially with a variable cross-section. Known analytical solutions 

concern mainly a rod of constant cross-section. Given the complexity of the problem posed, 

a numerical solution method is used - the finite element method (FEM), based on the 
variational minimum principle of the total energy. 

To simulate the straining process in high-rise structures under various dynamic 

influences, taking into account their real geometry and geometric nonlinearity, we take the 

calculation scheme shown in Fig.2. The lower part of the structure (z = 0) rests on a rigid 

foundation and oscillates under the action of a kinematic impact   )(,0 0 tutu  ; 

)(),0( 0 twtw  . The task is to determine the fields of displacements and internal force 

factors that arise at various structure points under kinematic effects. 

To describe the dynamic process occurring in the structure, the following functional is 

used: 

 

 dtUTL

t

 
0

    (1) 

 

and corresponding kinematic conditions 
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  )(,0);(),0(:0 00 twtwtutuz    (2) 

 

Here: T represents the kinetic energy of the rod model of the structure, U is the potential 

energy; П is the potential of external forces: of axial weight load - Q(z) on the longitudinal 

displacement of section "z" and of horizontal inertial load resulting from kinematic effect 

with acceleration )(0 tw  at the base of the stack. 

Let the cantilever rod under consideration, fixed in the base, perform bending vibrations 

in the direction of the least rigidity, determined by the horizontal deflection - w and 

longitudinal displacements - u. Then the potential energy of deformation under bending of 

the rod U, the kinetic energy T, the potential of gravity forces (axial compressive force Q(z) 

- the weight of the part of the structure located above), and inertial forces from the 
kinematic effect at the base П, related to the deflection w and longitudinal displacements u 

of the rod are defined in the following way: 
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Here u, w are longitudinal and transverse displacements of the rod section; z is the 

coordinate of the section, J(z) is the moment of inertia of the annular section; F(z) is the 

cross-sectional area, L is the structure's height. 

The terms in the last expression represent the potential of gravity and inertial forces 

from the kinematic effect, respectively. 

To obtain the equations for the rod oscillations, we use the Lagrange equations with 
generalized coordinates qi  in the longitudinal and transverse directions: 

 

i

ii

QUT
qq

T

dt

d

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




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
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
, )2,1( i    (4) 

 

Substituting expressions for potential and kinetic energies (3) and generalized external 

axial and transverse inertial forces Qi into (4) leads to two independent equations 

representing the equations of forced longitudinal and transverse vibrations of the rod under 

axial and horizontal loading 
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   (5) 

 

When solving the coupled system (5), it is necessary to set three boundary conditions at 

each end of the rod: one for the first equation (longitudinal vibrations) and two for the 
second (bending vibrations): 
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Rigid fixing at the base - 

z=0: u=0; ;0w   ;0
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free upper end -  z=L: 
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Thus, the problem of forced unsteady longitudinal-transverse oscillations of a rod 

(structure) is reduced to solving a system of equations (5) with boundary conditions at the 

ends of the rod (6) and initial conditions 
 

t=0:     u=0,  w=w0 ,           0ww  
   

(7) 

 

The solution to equations (5) under boundary and initial conditions (6) and (7) can be 

simple when a homogeneous beam with a constant inclination and thickness is considered 

within the framework of a linear formulation. 

When considering a beam of variable thickness, considering various kinds of 

nonlinearity, a numerical method should be used. 

Recently, the FEM has been widely used to solve variational problems in the mechanics 

of a deformable rigid body. It is characterized by a wide range of applicability, invariance 

with respect to the structure's geometry and materials' mechanical characteristics. 
The general scheme of the FEM consists in discretizing the model (a rod) under study 

by finite elements connected at a finite number of nodal points, the displacements of which 

satisfy the condition of the minimum of the total energy functional. 

2.2 Solution method 

To solve the variational problem (1) under kinematic conditions (2), we use the FEM with a 

discretization of the computational domain (Fig. 2) by finite elements in the form of a 

truncated cone of variable thickness (Fig. 3). 
 

 

Fig. 3. Rod element with positive direction of longitudinal ( ji uu , ), bending ( ji ww , ), and 

angular (
ji  , ) displacements. 
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The rod is approximated by a set of N rod elements of finite dimensions (Fig. 3), each of 

which works in compression and bending. At the junctions of the elements, generalized 

displacements are introduced, determined as a result of minimizing the functional (1) 

according to the debugged FEM algorithm. Based on the obtained displacements of the 

nodal points, the displacements of any point inside the element, its strain, and stresses are 

approximated. In this case, for each n-th element, changes in the cross-sectional area and 

moment of inertia are determined by the following formulas: 

 

    22
)()()( zRzRzF BHn   ,     44

)()(
4

)( zRzRzJ BHn 
    (8) 

 

where ziRzRziRzR BB

i

BHH

i

H  )(,)(  are the outer and inner radii of the annular 

section, respectively; 
BH ii , are the outer and inner inclinations of the element wall, 

respectively. 

Finite-element discretization of the considered problem of joint longitudinal-transverse 

oscillations of an elastic rod is performed by rod elements (Fig. 4) with linear  
ji uu , , 

ji ww ,  and angular 

z

w

z

w j

j
i

i








  ,

  displacements. 

Further use of the FEM procedure reduces the considered variational problem (1) and (2) to 
a system of resolving differential equations 

 

[М] q +[K]{q}={Q(t)}   (9) 

 

where [М] and [K] are the general matrices of mass and stiffness of the structure, formed 

from the matrices of mass and stiffness of individual elements (Fig. 3), {q} is the total 

vector of nodal displacements of structures, and {Q(t)} is the total nodal load acting on the 

structure, formed by the loads acting on individual elements. 

The stiffness matrix of an individual element [Ke] that characterizes the relationship 

between internal nodal forces and nodal displacements is determined by the general 
formula 

 

   




j

i

Bz

z

zR

zR

Tn zdrdEDK

)(

)(

][][     (10) 

 

Here, rectangular matrices [D] and [E] connect the displacements of the element nodes with 

strain 

 

    qD      (11) 

 

and stresses (internal forces) with strain, according to Hooke's law 

 

     E       (12) 

 

Below, depending on the consideration of one or another type of nonlinearity, the 

matrices [D] and [E] are supplemented with nonlinear components. 

Taking into account the disconnection of the longitudinal and transverse strains of the 
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rod element, the general matrices of the stiffness and masses of the element can be 

represented as 

 











tr

lonn

K

K
K

0

0
][  , 











tr

lonn

М

M
M

0

0
][    (13) 

 

Here, the submatrices [Мlon], [Klon] are the matrices of the masses and stiffness of the rod 

element under conditions of longitudinal strain, and [Мtr], [Кtr] - under bending. 

The stiffness and mass matrices of the rod under tension-compression conditions with 

longitudinal nodal displacements at the ends iu  and ju   have the order (2x2) and are 

obtained as a result of a linear approximation of displacements in the element 

 

zaau 21      (14) 

 

The law of change in the deflection of the rod element is taken as a cubic approximation 

representing the integral of the differential equation for the bending of a beam loaded in 

nodal sections (EIwIV(z)=0): 

 
3

6

2

543 zazazaaw    (15) 

 

Matrices of bending stiffness and masses of a rod with nodal displacements at the ends 

ji ww ,  and rotations at the ends 
ji  ,  are of the fourth order. 

The nodal load in section z under the own weight of the part of the stack located above the 

section, entering the right side of the first equation (4), increases linearly toward the base of 

the stack and is determined by the following formula 
 

Q1=g(L-z)     (16) 
 

The nodal inertial load over the entire height of the structure, entering the right side of the 

second equation (5), is determined by the base's acceleration and the structure's mass 

attributable to this node. 
When solving the problem of unsteady forced vibrations of a rod (a structure), in addition 

to the boundary conditions, the initial conditions are also considered. The presented matrix 

system of differential equations (9), where the unknowns are the displacements of the 

connecting nodes of the rod elements, is solved by the Newmark step-by-step method [24]. 

This method is based on expansions of unknown node displacements q(ti+) and their 

derivatives )( itq  into  power series (an integration step): 

 

itq( +)= qi +  iii qqq  3
2

2



    (17) 

)( itq = iq  ii qq  2  

 

where  and  are chosen under condition 0,5; 0,25(+0,5)2, which ensures the 

unconditional convergence of the integration process. 

Application of this method allows at each (i+1)-th time step to obtain the following 
algebraic system of equations for nodal displacements qi+1 
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[А]{qi+1}={Pi+1}     (18) 
 

where  
[А]= [К]+ [C]/()+[М]/(2)  (19) 
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where }{ iq , }{ iq  are the displacements, velocities, and accelerations of the nodal points 

obtained at the previous i-th step. 

System (18) with subsequent formulas (19) - (20) is given in the general form and 

contains the dissipation matrix [C]. In this paper, where the dynamics of an elastic model of 

a structure without dissipation is considered, [C]=0 is assumed. 

The procedure for generating global stiffness and mass matrices for the entire rod, and 

nodal inertial and weight load vectors, is performed automatically in the developed 

program. When forming the stiffness matrix, boundary conditions (6) at the ends of the 

column are considered. 

Using the described methodology and algorithm, a computer program was compiled to 

evaluate the dynamic behavior of real high-rise structures under various dynamic effects, 
considering their real geometry and nonlinear strain. 

In a geometrically nonlinear formulation (nonlinear dependence of strains on 

displacements), unsteady forced oscillations of the Novo-Angrenskaya HPP high-rise flue 

gas stack were studied under horizontal harmonic acceleration of the base during 8 s, 

changing according to the following law 

 

sec8
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where  is the frequency of external influences applied to the structure's base. When 

solving this problem, the own weight of the structure is also taken into account. 

To obtain the resolving equations of motion, we use the dependences of strains on 

displacements and maintain nonlinear terms. 

Then, in the case of longitudinal deformation of the rod, taking into account the 

geometric nonlinearity, we have  
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The dependence of the bending moment (M) on the curvature 
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, taking into 

account the geometric nonlinearity under bending of the rod, can be represented by the 

differential expression 
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Then dependence (11) ceases to be linear 
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    qqDq )(     (24) 

 

where the matrix components  )(qDq  are power functions of the nodal displacement 

vector components, and its elements are determined by the following formula 
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Here ijd  is an element of the matrix [D] in formula (11). 

By substituting (25) into (24) and, then, into (10), we obtain the stiffness matrix of the 

element, taking into account the geometric nonlinearity, which is the sum of the linear part 

(presented above) and the nonlinear part, depending on the longitudinal deformation 

acquired at each step and the change in curvature radius of the axis of the rod 
 

[K]= 




















































2

2

0

0

0

0

z

w
K

z

u
K

K

K

tr

lon

tr

lon
  (26) 

 

The resolving system of nonlinear differential equations obtained in the course of finite 

element discretization has the following form 
 

})]{([)}({}]{[}]{[ qqKtPqKqM нел    (27) 

 
with an additional allowance for viscosity, the system of differential equations (27) takes 

the following form 

})]{([)}({}]{[)]{[}]{[ qqKtPqKqKqM нел     (28) 

 

Both systems (27) and (28) are solved by an iterative method based on the Newmark 

method for solving systems of differential equations. In this case, the value of the right 

parts of systems (27) and (28) depends on the stress-strain state, expressed through the 

nodal displacements determined in the previous step. 

3 Results and discussion 

When solving the problem, zero initial conditions :0t    ;00 q    00 q   and 

kinematic effect (21) with a duration of 8 seconds and =0.4 Hz are used. The estimated 

time for the whole process is 20 sec. The system of nonlinear differential equations (27) 

and (28) is solved by the indicated iterative method. The calculations were made for the 

high-rise flue gas stack of the Novo-Angrenskaya HPP. 

Figure 4 shows the transverse displacements of the top point of the stack under the 

harmonic impact specified above, obtained considering the geometric nonlinearity (line 

). Here, for comparison, the displacements of the same point of a linear-elastic 

stack are given without considering the dissipation  (). 
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Fig. 4. Transverse displacements of top point of chimney obtained in geometrically nonlinear 

() and linear elastic  () formulations under horizontal kinematic effect  (21) 

 

A comparative analysis of the results obtained shows that an account for the geometric 

nonlinearity leads to a gradual increase in the amplitude of oscillations even after the 

cessation of the impact (from 8 to 12 sec in Fig. 4). The additional allowance for viscosity 

under the same dynamic action completely compensates for the unlimited increase in the 

amplitudes of a stack under geometrically nonlinear strain, bringing its behavior closer to 
that of an elastic stack with dissipative properties. This can be seen from the results 

presented in Fig. 5, where the thin line  ()  shows the transverse (a) and longitudinal 

(b) displacements of the elastic stack, and the line with asterisks ()) shows the 
corresponding displacements of the stack, taking into account geometrically nonlinear 

strain. 

 
а) 
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b) 

Fig. 5. Transverse (a) and longitudinal (b) displacements of top point of stack in linear-elastic 

() and geometrically nonlinear () formulations, taking into account dissipative 
properties of material under kinematic effect (21) 

 

The results presented in Fig. 4 are explained by a significant increase in the amplitude of 

stack displacements without dissipation under resonant action with the frequency of natural 

oscillations. The values of the amplitude and deformation of the stack at the time of 

termination of the kinematic load, in this case, large, therefore the right side of systems (27) 

or (28), containing the reactive loads from the nodal displacements obtained in the previous 

step ([Кnon(q)]{q}) when growing, increases the displacement at the next step of the 
iterative process even after the termination of the kinematic effect Р(t). The presence of 

dissipation (Fig. 5) reduces the absolute level of oscillations, and the nonlinear term has 

practically no effect on the magnitude of the displacements. 

Thus, the presence of geometric nonlinearity in some frequency ranges (resonant ones) for 

a structure with low dissipative properties leads to a significant increase in the oscillation 

amplitudes. The presence of dissipation in the structure compensates for the increase in the 

amplitude of oscillations after the termination of the impact. It leads to the disappearance of 

high-frequency harmonics. 

4 Conclusions 

1. A detailed review of known publications related to the assessment of the dynamic 
behavior of various high-rise structures is given in the article. 

2. A mathematical model of a high-rise structure was developed considering its design 

features, non-uniform axial load, dynamic impact of different frequency spectra, and 

geometric nonlinearity associated with large displacements of the structure and a significant 

change in its geometry. 

3. A technique was developed for calculating a high-rise structure, considering 

dissipation and geometric nonlinearity. 

4. The dynamic behavior of a high-rise structure (the flue gas stack of the Novo-

Angrenskaya HPP) under kinematic impact at the base was studied. 

5. The influence of dissipation in the material, which leads to rapid or gradual damping 
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of vibrations depending on the frequency spectrum of natural vibrations in one direction or 

another, was revealed; 

6. Geometric nonlinearity, leading to an increase in the amplitude of oscillations with 

low energy dissipation in the structure and resonant action, causes significant displacements 

of the structure; 

7. Non-stationary kinematic effects of different periods could cause resonant 

oscillations or a superposition of oscillations with different harmonics. 

8. The predominant effect of energy dissipation in the material on the pattern of the 

dynamic behavior of a high-rise structure was determined in comparison with geometric 

nonlinearity. 
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