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Preface

Due to greenhouse gas emissions, the world’s growing energy consumption has 
inevitably resulted in increased atmospheric pollution and global warming. The 
world has started to establish decarbonization and sustainability targets that call for 
greater use of renewable energy sources since environmental protection has become 
a very critical issue. Solar energy conversion systems (SECS), like photovoltaic (PV) 
systems, are particularly interesting among these renewable energy sources since 
they are cost-effective and environmentally benign sources of electricity. In recent 
years, optimizing and lowering the cost of energy produced by PV systems has been 
a particularly popular issue. Efforts to reduce costs often take two forms: enhancing 
the materials and physical makeup of PV cells and utilizing power electronic circuits 
with the PV generator to increase the solar system’s efficiency. Furthermore, random 
climatic factors, like temperature and irradiance flux, have a significant impact on 
PV system performances. As a result, modeling PV panels and creating optimization 
plans to maximize power extracted and boost efficiency under various irradiance 
circumstances are crucial tasks. This book provides a thorough review of new ideas 
and developments for solar PV energy systems by employing cutting-edge techniques.   

The book is intended for scientists and engineers who are interested in the most 
recent developments in solar energy systems or the renewable energy sector. 
Professionals in the field of solar energy, such as research scientists, project manag-
ers, system operators, planners, engineers, investors, and financiers of solar energy 
projects, are specifically addressed.

The book includes five chapters. Chapter 1, “Modeling Based on Daily Data of PV 
Power Plants”, investigates the modeling performance characteristics that are essen-
tial for the design and optimal operation of solar power plants. The target of this 
investigation is to determine an exact relationship between output power and weather 
conditions to avoid the influence of various factors on the performance of solar panels 
and data changes over time. A hybrid method based on genetic programming is 
presented for accurate modeling of solar power plan characteristics. The study evalua-
tion is verified using a 3-kW solar power plant, and based on the obtained results, the 
effectiveness of the proposed modeling method is approved.

Chapter 2, “Solar Power Prediction with Artificial Intelligence”, discusses optimiz-
ing renewable energy integration and ensuring efficient grid management through 
the application of artificial intelligence (AI) techniques for accurate solar power 
forecasting. The AI models considered include Artificial Neural Networks (ANNs), 
Support Vector Machines (SVMs), Random Forest (RF), and Gradient Boosting (GB). 
These models are selected based on their ability to capture complex patterns and 
non-linear relationships present in the solar energy data. Feature selection methods 
are utilized to identify the most relevant features that influence solar power genera-
tion. A comprehensive report detailing the forecasting process, methodology, and 
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results is generated, allowing decision-makers to make informed choices based on the 
forecasted solar energy data.

Chapter 3, “Parameters Identification of Solar Cells Mathematical Models Using 
Metaheuristic Algorithms”, focuses on simulating and assessing the performance 
of PV systems by constructing a precise mathematical representation using experi-
mentally gathered data from solar cells and PV modules. Different metaheuristic 
algorithms are employed to deduce the unknown parameters inherent in various 
modes of solar cells and PV modules. Comprehensive statistical analysis is carried out 
to validate the efficacy and stability of the selected algorithms.

Chapter 4, “Use of Concentrated Solar Power Technology for a High Temperature 
Processes: Case Study of Uzbekistan”, discusses the state of and prospects for the 
development of renewable energy use in Uzbekistan. It presents a comparative 
analysis of the technical and optical-energy characteristics of high-temperature 
solar furnaces of well-known research centers in Uzbekistan and their application 
in solving urgent scientific and technical problems. It illustrates some features of 
high-temperature processes by analyzing the process of quenching the considered 
high-temperature materials.

Chapter 5, “Addition of Organic Compounds in Gelatin-Biopolymer Gel Electrolyte 
for Enhanced Dye-Sensitized Solar Cells”, investigates the performance enhancement 
of dye-sensitized solar cells via doping of a series of organic compound additives. It 
analyzes the effect of utilizing gelatin (GLN) biopolymer-based gel electrolytes on 
the ionic conductivity, stability, and ability of ionic mobility. The authors carry out 
a series of simulation and experimental tests to outline the role played by the added 
organic compounds.

We are grateful to everyone who helped with this book, including the editorial team, 
reviewers, and authors.
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Chapter 1

Modeling Based on Daily Data
of PV Power Plants
Ali Reza Reisi

Abstract

Modeling performance characteristics is essential for the design and optimal oper-
ation of solar power plants. However, due to the influence of various factors on the
performance of solar panels and data changes over time, determining an exact rela-
tionship between output power and weather conditions is still challenging. In this
chapter, a hybrid method based on genetic programming will be presented for accu-
rate modeling of solar power plant characteristics, which includes two steps. First,
three points of open-circuit voltage, maximum power point, and short-circuit current
are modeled as functions of atmospheric conditions. For this purpose, by using the
modeling process based on genetic programming, relationships with high fit will be
obtained for these three points in terms of cell temperature and radiation. Then, with
the help of these equations, the voltage–current characteristics are modeled based on
the circuit analysis methods and without the need for factory data. To evaluate the
modeling for a 3 kW solar power plant, and based on the results, the effectiveness of
the proposed method will be shown.

Keywords: modeling, genetic programming, equivalent circuit, PV power plants,
daily data

1. Introduction

Solar power plants based on photovoltaic systems are considered as one of the
solutions to the energy crisis [1]. These power plants have been widely integrated into
power systems due to their easy installation and utilization, low cost, and high lifetime
[2]. This extensive integration, on a large scale, has brought challenges in consump-
tion management and load-frequency control of microgrids because the production
power of these power plants is intermittent and unplannable [3, 4]. In general, an
accurate and reliable prediction of output power is of vital importance for the design
and optimal operation of these power plants, which will lead to the improvement of
grid stability and energy consumption efficiency.

Also, it is necessary to have an accurate model of the functional characteristics of
solar power plants to detect faults, plan the time of washing the surface of the panels,
identify loose electrical connections, and evaluate the performance of electronic power
converters [5, 6]. For example, in fault diagnosis, after determining the voltage–current
characteristic curve, if the working point of the power plant is at the point of maximum
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power, then the fault has not occurred and the control and power electronics, connec-
tions, and panels work correctly, but if the point If the power plant is not working at
maximum power, an error has occurred, in this case, if the operating point is on the
voltage–current characteristic, the error is related to sensors, electrical connections, or
voltage converters, but if the power plant’s operating point is on the voltage–current
characteristic If there is no current, the fault is related to the solar panels.

So far, different methods have been presented for modeling solar panels [7]. Many
PV power forecasting models have been developed in previous studies based on differ-
ent strategies, such as data-driven modeling methods and equivalent circuit modeling.
Different methods can be divided into three categories: 1) methods based on artificial
intelligence, 2) methods based on equivalent circuits, and 3) combined methods.

In methods based on artificial intelligence, neural networks are usually used to
model or identify the solar panel. Neural networks, although in topics such as fault
detection [8], production energy prediction [9], estimation of some parameters such
as solar cell temperature [10], amount of radiation on cloudy days [11], and losses due
to dirt [12] perform well, the error of modeling the characteristics of solar panels is
significant compared to other methods [13, 14]. In some research [14, 15], to improve
accuracy, in addition to atmospheric conditions, voltage is also included as input and
the output is only current or power. However, there was not much improvement in
modeling accuracy. So, the modeling of solar panels based on these methods received
less attention.

In methods based on the equivalent circuit, the solar panel is modeled by a non-
linear circuit [16]. The main goal of these methods is to extract the unknown param-
eters of this non-linear circuit, which are dependent on atmospheric conditions. The
algorithm of these methods is based on the methods of circuit analysis and the work
data of the manufacturer [17, 18]. Complex circuit calculations are one of the chal-
lenges of these methods. In some of the proposed algorithms [19] some unknown
parameters are assumed to be constant to reduce the calculation burden. Nonetheless,
in practice, these parameters are variable, leading to a decrease in modeling accuracy
[20, 21]. Another challenge of these methods is the dependence of calculations on the
manufacturer’s data (datasheet) [22]. These data change over time and therefore the
accuracy of modeling in this method decreases. These cases are more frequent when
dealing with the accuracy of the modeling of the solar power plant, which consists of
interconnected solar panels.

The third category is the combined methods that do not suffer from the disadvan-
tages of the previously mentioned methods. In combined methods, both equivalent
circuits and neural networks are used to model the voltage–current characteristics of
solar panels. In these methods [21, 23, 24], first, the neural network determines the
unknown parameters according to atmospheric conditions. Then, the parameters are
placed in the main equation of the non-linear equivalent circuit and the voltage–
current characteristic can be provided. The main challenge of these methods is to form
a database for training neural networks. A neural network needs a set of
corresponding input and output data for training, but direct measurement of
unknown parameters is practically not possible.

The importance of modeling accuracy is evident in the utilization process of a solar
power plant that faces various challenges every day. Different methods presented for
modeling the solar power plant are not free from challenges. In this regard, using the
advantages of other modeling methods can be a solution to this problem.

Genetic programming (GP) is known as one of the most widely used tools in the
field of modeling. GP can be considered a completed version of the genetic
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optimization algorithm as it is capable of extracting diverse and complex equations
from databases and presenting them in the form of intuitive formulae [25]. Mohaghin
used GP to solve various problems, including transportation energy demand predic-
tion [26], analysis and optimization of thermocline solar energy storage [27], design
and development of circuits and antennas [28], and identification of nonlinear sys-
tems [29]. Yet, so far, this powerful tool has not been adopted for modeling solar
panels.

In this regard, in this chapter, a new method based on genetic programming for
solar power plant modeling is presented, which is both accurate and independent of
catalog data, so that it is possible to model old-installed solar power plants. The
proposed method consists of two parts. In the first part, three main points of the
voltage–current characteristic curve, i.e., open-circuit voltage, short-circuit current,
and maximum power, are modeled according to weather conditions using the GP. In
the second part, which is based on the equivalent circuit of a single diode, five
unknown parameters of the equivalent circuit are calculated using the results of the
first part and with the help of circuit analysis equations. In summary, the main
contributions of this chapter are:

• A new hybrid method for modeling solar power plants based on daily data.

• Using genetic programming to model the solar power plant.

• Independent solar power plant modeling from datasheet.

The next sections of this chapter are organized as follows: In Section 2, the state-
ment of the problem is discussed. The proposed method including two parts of GP and
circuit analysis will be presented in Section 3. In Section 4, by simulating the proposed
algorithm for a solar power plant, its performance is evaluated and the effective
factors in the simulation are discussed. Finally, in Section 5, the general conclusions of
the present study are summarized.

2. Statement of the problem

The solar cell, which consists of various materials such as silicon semiconductors,
produces electricity from sunlight. A solar panel consists of several solar cells
connected in series and parallel. Figure 1 shows the equivalent circuit of a solar panel.

Figure 1.
Equivalent circuit of a single-diode solar panel.
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Considering the parameters of Figure 1 and circuit analysis, the characteristics of
the solar panel are given here [30]:

I ¼ IPV � IO exp
V þ RSI
aVt

� �
� 1

� �
� V þ RSI

RP
(1)

IPV and IO are related to the irradiance and temperature changes as follows [30]:

IPV ¼ IS,n þ KIΔTð Þ G
Gn

(2)

IO ¼ ISC,n þ KIΔT
exp VOC,n þ KVΔTð Þ=aVt � 1

(3)

Additionally, Open-circuit voltage and short-circuit current are important points
on the I-V characteristic curve of a solar panel. These points vary with changes in
weather conditions. Using Eqs. (4) and (5), which are derived from the model equa-
tions, it is possible to calculate the short-circuit current and open-circuit voltage under
different weather conditions [30].

ISC ¼ ISC,n þ KIΔTð Þ G
Gn

(4)

VOC ¼ VOC,n þ KVΔT (5)

In the manufacturer’s datasheet of a PV module, information such as open-circuit
voltage (VOC), short-circuit current (ISC), maximum power value (Pm), current and
voltage values corresponding to maximum power, Im and Vm, and temperature
coefficients of current and voltage (KI and KV) are listed. However, the catalogs do
not provide information about solar cell performance such as optical current (IPV),
saturation current (IO), diode ideality factor (a), series resistance (RS), and shunt
resistance (RP). These unknown parameters are essential for modeling a PV module.

So far, various methods have been presented for extracting unknown parameters. In
these methods, parameter extraction is based on catalog data, such as KI, KV, ISC,n, and
VOC,n, but the data for solar panels change over time and the modeling error increases.
The challenge of combined methods in modeling solar panels is collecting data for
neural network training, while the values of unknown parameters cannot be measured
and must be extracted or calculated. In other words, it is not possible to model an old-
installed solar power plant using analytical methods and combined methods.

In the next section, the proposed method for modeling the solar power plant is
presented. The algorithm of the proposed method is independent of the factory
datasheet, so old solar power plants can be properly modeled.

3. The proposed method

The suggested method for modeling the solar power plant includes two steps: 1)
applying the GP, and 2) using circuit analysis. In the first step, three important points
of voltage–current characteristics are modeled as formulae using the GP and
according to cell temperature conditions and solar panel surface radiation. In the
second step, the unknown parameters of the equivalent circuit are calculated based on
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the circuit analysis equations and using the formulae of the previous step. Each of the
steps is described below.

3.1 Genetic programming

GP is a variant of genetic algorithm (GA) and was proposed (Koza [25]) to auto-
matically code computer programs to perform predefined tasks. The GP method [25]
is founded on the “survival of the fittest” and genetic propagation of characteristics
principles followed by biologically evolving species. Although GA and GP employ the
same principles of Darwinian evolution, there is a significant difference between their
application domains. That is, while the GA performs function maximization/minimi-
zation, GP implements symbolic regression (SR). Given an example input–output
data set, SR obtains an appropriate linear or a nonlinear function and all of its param-
eters that best fit the data.

The general form of the model obtained by GP-based SR for modeling is given
as follows.

y ¼ f α, βð Þ (6)

where f is a linear/non-linear function and α and β are the input values of the
function. In this research, these values are the cell temperature and irradiance, the
value of y, the output of the function, and one of the three values of open-circuit
voltage, short-circuit current, and maximum power.

The stages of GP include four parts, which are performed by GeneXprotools.5
software in this research. The first part is the initialization, where the problem and the
general structure of the solution are explained. The other three parts, namely, evalu-
ation and selection of fit, intersection, and mutation are done by the software.

A summary of the GP procedure consisting of four major steps is given below.

i. Initialization: Creates a random initial population of candidate (probable)
solutions to the given data-fitting problem using tree structures.

ii. Fitness evaluation and selection: Evaluate the fitness of each candidate solution
in the current population using a fitness function and selects fitter solutions to
form a pool of parent candidates (see Figure 1b) to undergo crossover.

iii. Crossover: Forms a new generation of candidate solutions (offspring); a
typical crossover operation executed on a randomly selected pair from the
parent pool is shown in Figure 2a.

iv. Mutation: Applies small changes to offspring candidate solutions (see
Figure 2b).

Among these, steps (ii)–(iv) are performed iteratively until the best data-fitting
candidate is achieved. Finally, statistical indicators are used to evaluate predictive
models and compare modeling accuracy.

3.2 Circuit analysis

To plot the V-I characteristics of the solar panel, it is necessary to calculate or
derive five parameters: a, IO, IPV, RS, and RP. Therefore, in this section, these
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parameters are calculated using the results of the previous step and based on circuit
analysis equations.

The coefficient a has a value between 1 and 2. Initially, its value is close to 1, and
over time, and with the decrease in efficiency of the installed panels, its value
approaches 2 [31]. Accordingly, the value of this coefficient is taken into account in
the form of Eq. (16), which is the inverse of the fill factor,

a ¼ IGPSC � VGP
OC

PGP
m

(7)

By comparing the values of IGPsc and VGP
oc with Eqs. (4) and (5) and substituting them

in Eq. (3), we have,

IO ¼ IGPSC
exp VGP

OC

� �
=aVt � 1

(8)

Considering that voltage and current values at the maximum power point are
approximately seven-tenths of the open-circuit voltage and nine-tenths of the short-
circuit current, Vm ≈ 0.7 � VOC and Im ≈ 0.9 � ISC, [32] the initial values of
resistances Rs and Rp can be found by the following equations,

RP0 ¼ Vm

ISC � Im
≈7 � VOC

ISC
(9)

Figure 2.
Schematic of GP: (a) random selection of branches for reproduction, (b) crossover operation.
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RS0 ¼ VOC � Vm

Im
≈0:34� VOC

ISC
(10)

Also, using the ratio IPV,n
ISC,n

¼ RPþRS
RP

[31], the following equation will replace Eq. (2),

IPV ¼ IGPSC � RP þ RS

RP
(11)

To calculate the two RS and RP parameters, open-circuit voltage and short-circuit
current values are inserted in Eq. (1),

0 ¼ IPV � IO exp
VOC

aVt

� �
� 1

� �
� VOC

RP
(12)

ISC ¼ IPV � IO exp
RSISC
aVt

� �
� 1

� �
� RSISC

RP
(13)

Using Eqs. (7) to (13), the voltage–current characteristics curve is extracted based
on the following algorithm.

1.Start

2.Calculate VOC, ISC, and Pm.

3.Calculate a using Eq. (7).

4.Calculate IO using Eq. (8).

5.Set the initial values of RP and RS using Eqs. (9) and (10).

6.Calculate IPV using Eq. (11).

7.Calculate RP using Eq. (12).

8.Calculate Rs using Eq. (13).

9.Repeat steps 6–8 until the parameters converge.

Figure 3 shows the flowchart of the proposed method, which includes the above
two steps to calculate the voltage–current characteristic curve.

4. Simulation and discussion

In this section, the performance of the proposed algorithm is evaluated for model-
ing a 3 kW power plant. For this purpose, first, by using GP and the data of a sunny
day, open-circuit voltage, short-circuit current, and maximum power are determined
in terms of solar cell temperature and radiation. Next, based on these formulae and
using the circuit analysis, unknown parameters are extracted to model the voltage–
current characteristic.
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4.1 Genetic programming

In this section, short-circuit current, open-circuit voltage, and maximum power of a
3 kW power plant are modeled by GP according to cell temperature and solar panel
surface radiation. The output of this section includes three formulae that can be used to
calculate these three quantities for all cell temperatures and radiations. The initial struc-
ture of the formula of these three quantities is considered according to Eqs. (14)–(16).

Isc ¼ f pv1 TC,Gð Þ (14)

Voc ¼ f pv2 TC,Gð Þ (15)

Pm ¼ f pv3 TC,Gð Þ (16)

After the implementation of GP, with the initial population size of 500, the num-
ber of generations of 1000, the crossover rate of 0.8, and the mutation probability of
0.12, the three suggested formulae for estimating the values of ISC, VOC, and Pm are:

IGPsc ¼ �0:253þ 0:0047 TC þ 0:0303 T0:022
C �G (17)

VGP
oc ¼ �222:07 � 0:57 TC þ 308:52 G0:017 þ 0:044 TC �G0:17 (18)

PGP
m ¼ �0:294þ 0:0294T0:0047

C � G
� �

66:43� 0:237G0:67 � 0:536 T G�0:044
�

þ 6:144 T0:011
C � G0:325

�
(19)

Two statistical indices of root mean square error (RMSE) and coefficient of deter-
mination, R2, according to the following equations are used to evaluate the accuracy
of the proposed formulae.

Figure 3.
The flowchart of the proposed method includes three steps: GP, circuit analysis, and V-I curve.
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 yo � yp
� �2

Nsa

vuut
(20)

R2 ¼ 1�
PN

i¼1 yo � yp
� �2

PN
i¼1 yo � y
� �2 (21)

Statistical indices including RMSE and R2 are reported in Table 1, Appendix A.

4.2 Circuit analysis

In this section, according to the proposed algorithm, Figure 3, having the formulae
of open-circuit voltage, short-circuit current, and maximum power, the values of five
unknown parameters can be calculated. Table 2 shows the simulation results for the
test data, Appendix B.

To check the performance of the proposed method, the modeling for other data
should also be evaluated. For this purpose, the modeling of the solar power plant for a
sunny day with cell temperature and radiation intensity shown in Figure 4 has been
done, Figure 5 shows the performance of the proposed method.

Figure 4.
Atmospheric conditions. a) Temperature, b) irradiance.
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Figure 6 shows the voltage–current characteristics. Also, the values of RMSE and
R2 are presented in Table 3, Appendix C. As can be seen, the results match the
initialization data very accurately, which is due to the accurate modeling of five
parameters based on the proposed equations. In this case, the parameters change
depending on atmospheric conditions, such as the parameters a, Rp, and Rs, which are
usually included in fixed circuit analysis methods. Here, based on the proposed for-
mulae, the parameters change proportionally.

The proposed method can be compared with the hybrid method presented in the
article [23]. This comparison can be made in the two fields of modeling process and

Figure 5.
Solar power plant modeling a) open-circuit voltage, b) short-circuit current, c) maximum power.
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modeling results. In the modeling process, databases play an effective role. In the
proposed method, the databases are small and the required data can be measured, but
the required data of the [23] method are five unknown parameters that cannot be
measured directly, and these data are extracted with calculations and optimization
methods. Also, to train the neural network in the method, the databases should
be wider.

Another area where two methods can be compared is comparing their results. In
this regard, the method of the [23] is implemented by the data of Table 2, so that part
of the data is used for training and part as a test. The results of the simulations for the
test data are shown in Table 4, Appendix D. The main reason for the low accuracy of
the modeling done is the small amount of training data.

5. Discussion

In the utilization of the solar power plant, modeling the instantaneous values of
three parameters: maximum power, open-circuit voltage, and short-circuit current are
important. These values are effective both in the process of controlling and extracting
power and in evaluating the performance of the controller. In the following, the
effective factors in modeling and determining these three points are discussed in
different ways.

5.1 The effect of time

The parameters and coefficients of solar panels change over time. These changes
are the main challenge of the analytical methods because, in these methods, the
parameters are extracted based on the factory data. The passage of time does not play
a role in optimization methods because the parameter extraction algorithm is re-
executed when the weather conditions change. In the modeling with the proposed
algorithm method, the passage of time is taken into account in such a way that after

Figure 6.
Voltage–current characteristic of a 3 kW power plant for actual and modeled values.
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each periodical maintenance service, once or twice a year, older data is deleted, newer
data is added, and the formula is renewed. On other days of the year, modeling is
performed based on the calculated formulae.

5.2 The effect of data type

In the analytical methods, the data required for modeling are diverse and include
factory data (solar panel catalog), three important characteristic points of voltage–
current, and atmospheric conditions. After modeling, the input data is the atmo-
spheric condition and the output data is the voltage–current characteristic. With this
feature, it is possible to extract three important points. In modeling by optimization
method, the required data include different voltage–current points in certain atmo-
spheric conditions. The output of this method is the five unknown parameters of
Eq. (1). In other words, the voltage–current characteristic in specific atmospheric
conditions it is possible to determine three important points. In the proposed method,
the required data includes a set of three important points and weather conditions for
two or three days of the year. After modeling the input data, atmospheric conditions
and output data are three important points. Also, based on the proposed formulae, it is
possible to extract five unknown parameters by analytical method without the need
for a factory datasheet. Simply put, the proposed method is a combination of two
analytical and optimization methods.

5.3 Fault analysis

Among these three methods, analytical methods provide less accuracy. In analyti-
cal methods, three out of five unknown parameters usually have a fixed value for
different weather conditions. In other words, these three constant parameters are
determined for STC; therefore, in other atmospheric conditions for low irradiance,
modeling is associated with errors. In large power plants, including series and parallel
panels, this error is more visible. In the optimization methods, the error has been
reported as negligible because the optimization algorithm is implemented for each
weather condition. Due to the continuous implementation of algorithms in practice,
there is a possibility of measurement errors and hardware failure. In these methods,
there is a compromise between the speed and accuracy of the response and the
hardware used. The error of the proposed method depends on the quality of the
collected data. If the data includes both sunny and cloudy days, the modeling error is
negligible. Also, due to the functional changes of solar panels over time, older data
should be excluded from the process of modeling and calculation of formulae.

6. Conclusions

Accurate modeling of the solar power plant is important both from the point of view
of the power plant to diagnose faults, plan maintenance, and improve performance and
from the smart networks to manage production and consumption and control fre-
quency and stability. In this chapter, using the GP technique, three important points of
voltage–current characteristics are modeled as formulae of atmospheric conditions. To
calculate the proposed formulae, the data from one day at a solar power plant including
atmospheric conditions are used as variables and three important points are adopted as
outputs. It was also shown in this chapter that with the help of the calculated formulae,
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it is possible to extract five unknown parameters of the single-diode model with high
accuracy and without the need for factory data. Finally, the proposed method was
simulated for a 3 kW power plant. The simulation results were effective and the
proposed method showed three important points of voltage–current characteristics
while extracting the unknown parameters of the single-diode model.

Highlights

• A hybrid method for modeling the solar power plant will be investigated, which
is simple and efficient.

• The proposed method is independent of the data sheet information, as it enables
the modeling of panels that have been installed for several years.

• The method reviewed in this chapter performs modeling with high accuracy
based on the daily data of the solar power plant, the required data are small and
measurable.

Appendices and nomenclature

STC the standard test condition (Tn = 25°C and Gn = 1000 W/m2)
Tn the solar cell temperature at standard test conditions (25°C)
TC the cell temperature (°C)
ΔT the cell temperature difference from STC
Gn the solar irradiance at standard test conditions (1000 W/m2)
G the solar irradiance (W/m2)
IPV,n the photovoltaic current at standard test conditions (A)
IPV the photovoltaic current (A)
VOC,n the open circuit voltage at STC (V)
VOC the open circuit voltage (V)
ISC,n the short circuit current at STC (A)
ISC the short circuit current (A)
IO the reverse saturation current
Vt the thermal voltage which is equal to NSKTC=q(V)
NS the number of cells connected in a series
K the Boltzmann constant
q the electron charge
a the diode ideality factor
RS the series resistances
RP the parallel resistances
KI the ratio of short-circuit current to temperature
KV the temperature coefficient of open-circuit voltage
Nsa the number of samples
yO the data observed from practical experiments
yP the corresponding data obtained using the GP
y the mean of the data
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Appendix A

See Table 1

Appendix B

See Table 2

Appendix C

See Table 3

GP input GP output Circuit analysis results

T (W/m2) Tc (Co) VOC (V) ISC (A) Pm (kW) a IPV (A) IO (μA) Rs (Ω) Rp (Ω)

302.34 16.8 110.28 9.5739 0.7533 1.40 9.82 0.030 3.57 139.2

307.91 17.2 110.21 9.7605 0.7671 1.40 10.01 0.032 3.57 139.0

309.25 18.1 109.83 9.8192 0.7674 1.41 10.07 0.039 3.56 138.3

311.73 18.8 109.56 9.9109 0.7715 1.41 10.17 0.044 3.56 137.8

409.36 20.9 110.30 13.1071 1.0270 1.41 13.44 0.060 3.55 137.7

427.01 22.0 110.07 13.6997 1.0692 1.41 14.05 0.073 3.54 137.1

544.91 26.2 109.75 17.6112 1.3616 1.42 18.07 0.149 3.52 135.8

598.33 27.4 109.82 19.3753 1.4957 1.42 19.88 0.182 3.51 135.6

618.37 27.9 109.81 20.0387 1.5453 1.42 20.56 0.199 3.50 135.5

687.09 29.5 109.80 22.3141 1.7147 1.43 22.89 0.263 3.49 135.7

815.44 34.9 108.58 26.6278 2.0007 1.45 27.32 0.669 3.46 133.4

831.48 34.1 109.06 27.1356 2.0499 1.44 27.84 0.588 3.46 133.6

882.79 35.2 108.98 28.8412 2.1707 1.45 29.59 0.715 3.45 133.4

867.38 35.9 108.56 28.3518 2.1239 1.45 29.09 0.799 3.45 132.8

894.87 36.2 108.64 29.2598 2.1910 1.45 30.02 0.846 3.44 132.9

923.39 36.9 108.56 30.2110 2.2560 1.45 30.99 0.957 3.43 132.7

948.13 37.4 108.52 31.0342 2.3133 1.46 31.84 1.047 3.43 132.6

972.29 38.2 108.35 31.8455 2.3652 1.46 32.67 1.201 3.42 132.2

Table 2.
Simulation results for test data.

Index VOC ISC Pm

RMSE 0.0154 0.0162 0.0236

R2 0.9998 0.9997 0.9988

Table 1.
Statistical indices corresponding to each proposed equation.
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Appendix D

See Table 4
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Index VOC ISC Pm

RMSE 0.0213 0.0197 0.0251

R2 0.9989 0.9991 0.9983

Table 3.
Statistical indices corresponding to each proposed equation.

Index a IPV (A) IO (μA) RS (Ω) RP (Ω)

RMSE 0.1316 0.3548 0.3827 0.2161 0.1925

R2 0.8485 0.6971 0.7283 0.7935 0.8218

Table 4.
Statistical indices corresponding to each proposed equation.
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Chapter 2

Solar Power Prediction with
Artificial Intelligence
Enas Raafat Maamoun Shouman

Abstract

Solar power prediction is a critical aspect of optimizing renewable energy integra-
tion and ensuring efficient grid management. The chapter explore the application of
artificial intelligence (AI) techniques for accurate solar power forecasting. The AI
models considered include Artificial Neural Networks (ANN), Support Vector
Machines (SVM), Random Forest, and Gradient Boosting. These models are selected
based on their ability to capture complex patterns and non-linear relationships present
in the solar energy data. The solar power forecasting process involves data
preprocessing, feature selection, model training, and evaluation. Data preprocessing
techniques are applied to handle missing values and normalize the data to improve
model performance. Feature selection methods are utilized to identify the most rele-
vant features that influence solar power generation. The AI models are trained using
historical data, where they learn the relationships between input features and solar
power generation. Model evaluation is carried out using metrics such as Mean Squared
Error (MSE) and Root Mean Squared Error (RMSE) to assess the accuracy of the
forecasts. Furthermore, the forecasted results are visualized through line plots and
error plots to provide valuable insights to stakeholders. A comprehensive report
detailing the forecasting process, methodology, and results is generated, allowing
decision-makers to make informed choices based on the forecasted solar energy data.

Keywords: solar power, artificial intelligence, data analysis, machine learning,
statistical prediction methods

1. Introduction

While solar energy presents numerous benefits, its integration into the electricity
grid introduces challenges related to its inherent intermittency and variability. Unlike
conventional power sources like coal or natural gas plants that can produce a consis-
tent output, solar power production fluctuates based on weather conditions, time of
day, and geographical location. These fluctuations make it challenging for grid opera-
tors to maintain grid stability and ensure a reliable power supply.

Solar power forecasting plays a crucial role in addressing the challenges posed by
solar energy’s intermittent nature. Accurate solar power forecasts enable grid operators
to anticipate fluctuations in solar generation and plan grid operations accordingly. By
having precise forecasts of solar power production, utilities can optimize the use of solar
energy while efficiently managing conventional power generation sources for backup.
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Effective solar power forecasting contributes to grid stability and reduces the need
for fossil fuel-based backup power generation. Integrating solar power forecasts into
energy management systems allows for better coordination of electricity generation,
distribution, and demand response strategies. It enables grid operators to optimize the
dispatch of power resources, thus minimizing energy wastage and reducing overall
operational costs.

The ability to predict solar power production aids in avoiding imbalances between
forecasted and actual generation, which can lead to financial penalties or missed
revenue opportunities.

Governments worldwide are increasingly setting renewable energy targets and
implementing supportive policies to promote the adoption of solar power and other
clean energy sources. Solar power forecasting is a critical component of these policies,
as it helps grid operators meet renewable energy integration mandates and transition
towards a low-carbon energy future.

In recent years, significant advancements in forecasting technology have improved
the accuracy of solar power forecasts. Advanced weather modeling, artificial intelli-
gence, machine learning algorithms, and high-resolution satellite imagery have
enhanced the precision and lead times of solar power predictions.

In an era marked by the escalating demand for clean and sustainable energy
sources, solar power has emerged as a promising solution to address the global energy
challenge. As the world seeks to transition from fossil fuels to renewable resources, the
efficient integration of solar energy into power systems assumes paramount impor-
tance. This necessitates the development of accurate solar power prediction models
that enable optimal energy management and grid operation. The fusion of artificial
intelligence (AI) techniques with solar power forecasting holds tremendous potential
in realizing this objective.

This chapter delves into the realm of solar power prediction, focusing on
the application of AI methodologies to enhance the accuracy and reliability of
solar power forecasts. The underlying premise is that accurate predictions
enable stakeholders to make informed decisions, thereby facilitating the
seamless integration of solar energy into the broader energy landscape. By
employing AI models, such as Artificial Neural Networks (ANN), Support Vector
Machines (SVM), Random Forest, and Gradient Boosting, this chapter explores how
intricate patterns and non-linear relationships inherent in solar energy data can be
effectively captured.

Solar power forecasting, a multifaceted process, encompasses several stages aimed
at transforming raw data into actionable insights. These stages include data
preprocessing, feature selection, model training, evaluation, and visualization. Data
preprocessing techniques are crucial to handle missing values and normalize data,
thereby enhancing the performance of AI models. Feature selection methodologies
contribute to identifying the most influential variables that impact solar power gen-
eration, streamlining the forecasting process.

The AI models employed in solar power prediction are trained using historical
data, enabling them to discern intricate connections between input features and solar
power output. The process involves extracting underlying trends and correlations, a
task ideally suited to AI’s prowess in pattern recognition. Model evaluation is para-
mount to ascertain the accuracy of predictions. Metrics such as Mean Squared Error
(MSE) and Root Mean Squared Error (RMSE) serve as benchmarks to gauge the
fidelity of forecasts, ensuring that the developed models meet rigorous performance
standards.
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Visualizing the forecasted results adds an essential layer of comprehension for
stakeholders. Line plots and error plots offer intuitive insights, facilitating a clear
understanding of the forecast’s reliability and potential areas for improvement. The
visualization component bridges the gap between technical complexity and practical
applicability, empowering decision-makers to make informed choices based on the
forecasted solar energy data.

Moreover, the culmination of these efforts is a comprehensive report, detailing the
forecasting process, methodologies employed, and the resultant outcomes. This report
empowers decision-makers and stakeholders with a comprehensive understanding of
the forecast’s underpinnings, enabling them to navigate the intricacies of solar power
integration with confidence.

In summary, the marriage of AI techniques with solar power prediction presents
an unprecedented opportunity to optimize renewable energy integration and stream-
line grid management. The ensuing exploration will delve into the specific AI models
employed, the intricacies of the forecasting process, and the tangible benefits that
accurate solar power predictions offer to the energy landscape. By unveiling the
synergy between artificial intelligence and solar energy, this chapter aims to catalyze
advancements that are instrumental in shaping a sustainable and resilient future
powered by the sun’s abundant rays.

The dynamic landscape of renewable energy has underscored the pivotal role of
solar power forecasting in optimizing the integration of solar energy into the electric-
ity grid. Accurate predictions of solar irradiance and energy production are funda-
mental to ensuring efficient grid management and harnessing the potential of solar
power. Recent years have witnessed a surge in the development of diverse forecasting
models and techniques, aimed at enhancing the precision of solar power predictions.
This research chapter embarks on a comprehensive exploration, analysis, and evalua-
tion of various solar power forecasting models, encompassing statistical, machine
learning, and physical approaches. By scrutinizing the strengths and limitations of
each method, this study aspires to contribute to the evolution of solar power forecast-
ing technology, fostering the seamless integration of solar energy into mainstream
energy systems.

2. Literature review for solar energy prediction

A wealth of research has contributed valuable insights to the realm of solar energy
prediction. Studies have explored diverse avenues, from machine learning techniques
to hybrid models and ensemble learning, each enhancing our ability to forecast solar
power outputs.

Numerous previous studies have delved into the realm of solar energy prediction,
exploring diverse methodologies to enhance the accuracy of forecasts. These investi-
gations have shed light on the efficacy of various approaches and models, contributing
to the evolution of solar power forecasting technology.

Application of Machine Learning Techniques, a study conducted by
Smith et al. [1] investigated the application of machine learning techniques,
including Random Forest and Support Vector Machines, for solar power prediction.
Their findings revealed that these algorithms demonstrated improved predictive
accuracy compared to traditional methods. The study highlighted the potential of
machine learning to capture complex solar energy patterns and enhance forecasting
precision.
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Integration of Numerical Weather Prediction Models, incorporating numerical
weather prediction models, a study by Garcia-Soriano et al. [2] showcased the benefits
of coupling AI models with meteorological insights. Their hybrid approach, combin-
ing Artificial Neural Networks with numerical weather prediction data, yielded more
robust solar power predictions. This integration enabled a more holistic understanding
of solar energy dynamics and bolstered forecast accuracy.

Ensemble Learning for Enhanced Predictions, the study by Zhang et al. [3]
explored the efficacy of ensemble learning techniques, such as Gradient Boosting and
AdaBoost, in solar power forecasting. Their research demonstrated that ensemble
models outperformed individual models by mitigating model biases and uncertainties.
The findings underscored the potential of ensemble learning to yield more reliable and
accurate solar energy predictions.

Long Short-Term Memory Networks for Temporal Analysis, Temporal dynamics
play a pivotal role in solar energy generation. A study by Wang et al. [4] delved into
the application of Long Short-Term Memory (LSTM) networks for capturing tempo-
ral patterns in solar irradiance. Their findings indicated that LSTM-based models
excelled at discerning intricate temporal relationships, leading to more accurate pre-
dictions of solar energy outputs.

Hybrid Models for Multi-Scale Prediction, a comprehensive investigation by Chen
et al. [5] delved into hybrid models that combine machine learning and physical
models for multi-scale solar power prediction. Their study showcased that integrating
machine learning insights with physical principles yielded more robust forecasts
across different timescales. This hybrid approach provided a holistic understanding of
solar energy behavior and enhanced predictive accuracy.

3. Generation forecasting models for solar power

The forecasting models are continuously being improved to generate more accu-
rate forecasts of solar and wind power.

3.1 The physical approach model

The physical approach describes the physical relationships between weather con-
ditions, topography, solar irradiance, and the solar power outputs of the plant. The
input data include numerical weather predictions (NWP), local meteorological mea-
surements as the sky imagers for tracking the clouds movement, and SCADA (the
user) data for the observed output power, and additional information about the
characteristics of the nearby terrain and topography of the site. The satellite
systems and sky imagers are used for tracking the clouds and forecast the solar
irradiance up to 3 hours in advance, further than that NWP is usually used to project
the irradiance.

3.2 Statistical models for solar power forecasting

Describes the connection between predicted solar irradiance from NWP and solar
power production directly by statistical analysis of time series from data in the past
without considering the physics of the system. This connection can be used for fore-
casts in the future plant outcomes.
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3.2.1 Time series models

Time series models are widely used for solar power forecasting due to their ability
to capture patterns and trends in historical data. These models analyze past solar
power generation data and identify seasonal, trend, and cyclical patterns to make
future predictions. Common time series models include the Autoregressive Integrated
Moving Average (ARIMA) model and the Seasonal Decomposition of Time Series
(STL) model [6].

3.2.2 Autoregressive integrated moving average (ARIMA) model

The ARIMA model is a popular time series forecasting technique that combines
autoregression, differencing, and moving averages. It is particularly useful for non-
stationary time series data, where the mean and variance change over time. The
ARIMA model looks at the relationship between the current and past observations to
make forecasts for future values. By adjusting the model’s parameters, such as the
order of autoregression and moving average, it can be customized to suit specific solar
power data patterns and produce accurate forecasts [7].

The ARIMA model combines autoregression, differencing, and moving averages to
forecast future values. The general equation for an ARIMA(p, d, q) model is:

Y tð Þ ¼ cþ Σ φi ∗ Y t� ið Þð Þ þ ε tð Þ � Σ θi ∗ ε t� ið Þð Þ (1)

where Y(t) represents the observed solar power production at time period t, c is a
constant term, φi represents the autoregressive coefficients for past observations up to
order p, Y(t-i) represents the observed solar power production at previous time
periods, d represents the order of differencing to make the time series stationary, ε(t)
is the white noise error term at time period t, θi represents the moving average
coefficients for past error terms up to order q, and ε(t-i) represents the error terms at
previous time periods [8].

3.2.3 Seasonal decomposition of time series (STL) model

The STL model decomposes the time series data into seasonal, trend, and remain-
der components, enabling a more thorough understanding of underlying patterns. It is
particularly useful for solar power forecasting, where seasonal variations due to sun-
light hours and weather changes play a significant role. The STL model first extracts
the seasonal and trend components, and then the remainder component, which rep-
resents the noise or irregular variations in the data. By forecasting each component
separately and combining them, the STL model can provide more accurate predictions
for future solar power generation [9].

The STL model decomposes the time series data into seasonal, trend, and remain-
der components. The general equation for the STL model can be represented as:

Y tð Þ ¼ S tð Þ þ T tð Þ þ R tð Þ (2)

where Y(t) represents the observed solar power production at time period t, S(t)
represents the seasonal component, T(t) represents the trend component, and R(t)
represents the remainder component (irregular variations or noise).
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The STL model performs a process of seasonal decomposition to extract each
component separately, and then the components are forecasted individually to
produce the final forecast for future solar power production [6].

3.3 Machine learning models for solar power forecasting

Artificial intelligence (AI) methods are used to learn the relation between
predicted weather conditions and t h e power output generated as time series of the
past. Unlike statistical approaches, AI methods use algorithms that are able to implic-
itly describe nonlinear and highly complex relations between input data (NWP pre-
dictions and output power) instead of an explicit statistical analysis. For both the
statistical and AI approach, high quality time series of weather predictions and power
outputs from the past are of essential importance.

Renewable energy sources, such as solar power, play a crucial role in addressing
the world’s growing energy demand while reducing greenhouse gas emissions. Accu-
rate solar power forecasting is essential for effective grid integration and optimal
energy management. Machine learning models have gained popularity in solar power
forecasting due to their ability to capture complex patterns and non-linear relation-
ships in solar power generation data [10]. In this article, we will explore four popular
machine learning models used for solar power forecasting: Artificial Neural Networks
(ANN), Support Vector Machines (SVM), Random Forest, and Gradient Boosting.

3.3.1 Artificial neural networks (ANN)

ANN is a computational model inspired by the human brain’s neural networks. It
consists of interconnected nodes (neurons) organized in layers. ANN can capture
non-linear relationships and intricate patterns in solar power generation data. The
ANN model involves three layers: the input layer, hidden layers (multiple layers with
hidden neurons), and the output layer. Each neuron in the hidden layers applies a
weighted sum of inputs and applies an activation function to produce the output [11]
(Figure 1).

Figure 1.
General scheme Examlpe of an artificial neural network (ANN).
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The equation for computing the output of a neuron in the hidden layers is
given by:

Activation tð Þ ¼ Activation_Function Σ Wi ∗ Input tð Þ þ bð Þð Þ (3)

where: Activation(t) is the output of the neuron at time t.
Activation_Function represents the activation function, such as sigmoid or ReLU.
Wi represents the weight associated with the ith input feature.
Input(t) represents the input features at time t. b is the bias term.

3.3.2 Support vector machines (SVM)

SVM is a powerful supervised learning algorithm used for classification and
regression tasks. SVM finds the hyperplane that best separates data into different
classes or, in the case of regression, predicts the continuous target variable. In solar
power forecasting, SVM can predict solar power generation based on historical
weather and solar irradiance data [12].

For regression using SVM, Figure 2 shows the general scheme of support vector
machines

The equation for predicting solar power generation at time t is:

Prediction tð Þ ¼ Σ αi ∗ Kernel Input tð Þ, SupportVector ið Þð Þð Þ þ b (4)

where: Prediction(t) is the predicted solar power generation at time t.
αi represents the coefficients associated with the support vectors.
Kernel is the kernel function that computes the similarity between input data

and support vectors. SupportVector(i) represents the ith support vector. b is the
bias term.

Figure 2.
General scheme of Support Vector Machines (SVM).
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3.3.3 Random forest

Random Forest is an ensemble learning method that combines multiple decision
trees to improve predictive accuracy and reduce overfitting. Each decision tree is
built on a random subset of the data, and the final prediction is obtained by
averaging the predictions from all trees [13]. The equation for the prediction using
Random Forest is:

Prediction tð Þ ¼ 1=Nð Þ ∗ Σ Prediction_i tð Þð Þ (5)

where: Prediction(t) is the final predicted solar power generation at time t.
N is the number of decision trees in the Random Forest ensemble.
Prediction_i(t) represents the predicted solar power generation at time t from the

ith decision tree.

3.3.4 Gradient boosting

Gradient Boosting is another ensemble learning technique that builds multiple
weak learners (typically decision trees) sequentially, with each tree attempting to
correct the errors of the previous tree. The final prediction is the weighted sum of
predictions from all trees [14].

The equation for the prediction using Gradient Boosting is:

Prediction tð Þ ¼ Initial Prediction tð Þ þ Σ Shrinkage Rate � Tree Prediction i tð Þð Þ (6)

where: Prediction(t) is the final predicted solar power generation at time t.
Initial_Prediction(t) is the initial prediction (e.g., the mean of the target variable).
Shrinkage_Rate is a regularization parameter that controls the learning rate of the

model.
Tree_Prediction_i(t) represents the predicted solar power generation at time t

from the ith decision tree.
Machine learning models, such as Artificial Neural Networks, Support Vector

Machines, Random Forest, and Gradient Boosting, offer powerful tools for accurate
solar power forecasting. These models can effectively capture complex patterns and
relationships in solar power generation data, contributing to improved energy man-
agement and grid integration.

3.4 The combined approach

Modern practical renewable power forecasting models are usually a
combination of physical and statistical models. The physical approach needs
statistics to adjust for more accurate forecasts, while the statistical approach
needs the physical relations of output power production for better forecasts.
The optimal performance of the combined models is achieved by optimal
shifting of weights between the physical approach-based forecasts and the
statistical forecasts

26

Advances in Solar Photovoltaic Energy Systems



4. Methodology: Harnessing artificial intelligence for accurate solar
power prediction

The methodology adopted in this study harnesses the prowess of AI techniques to
achieve accurate solar power predictions. The strategic selection of AI models,
coupled with meticulous data preprocessing, feature selection, model training, evalu-
ation, and visualization, forms a robust framework for optimizing renewable energy
integration and grid management.

Solar power prediction plays a pivotal role in optimizing the integration of renewable
energy sources, such as solar energy, into the electricity grid. The following section
outlines the comprehensive approach undertaken to achieve precise solar power forecasts.

The foundation of our solar power forecasting methodology rests on the
strategic selection of AI models. The considered models include Artificial Neural Net-
works (ANN), Support Vector Machines (SVM), Random Forest, and Gradient Boosting.
These models have been chosen for their inherent capability to decipher intricate patterns
and nonlinear relationships inherent in solar energy data. This strategic choice ensures the
potential to capture the nuanced dynamics influencing solar power generation, Figure 3
shows the Comparison Analysis of Machine Learning Technique

Figure 3.
Comparison analysis of machine learning technique.

27

Solar Power Prediction with Artificial Intelligence
DOI: http://dx.doi.org/10.5772/intechopen.1002726



The solar power forecasting process is multifaceted, encompassing several key
stages that collectively contribute to accurate predictions. Data preprocessing is a
pivotal initial step aimed at enhancing the quality of input data. Techniques are
applied to handle missing values, ensuring data completeness. Additionally, data
normalization is employed to standardize the input features, facilitating consistent
model performance.

The identification of influential features that impact solar power generation is
a cornerstone of our methodology. Feature selection methods are meticulously
applied to discern the most relevant variables within the dataset. This step refines the
model’s focus, enhancing its ability to capture the crucial drivers of solar energy output.

The selected AI models are trained using historical data, enabling them to unravel
the intricate relationships between input features and solar power generation.
Through iterative learning, the models discern the underlying trends and patterns that
govern solar energy dynamics.

The accuracy and reliability of the developed models are rigorously assessed
through model evaluation. Metrics such as Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE) serve as benchmarks to quantify the predictive performance.
These metrics enable an objective assessment of how closely the model’s predictions
align with actual solar power outputs.

Visualizations serve as a bridge between technical complexity and practical
understanding. The forecasted results are depicted through line plots and error
plots, offering stakeholders valuable insights into the model’s performance. These
visualizations illuminate the accuracy of predictions and potential areas for
refinement.

The methodology culminates in the generation of a comprehensive report. This
report meticulously documents the forecasting process, the methodologies employed
at each stage, and the resulting outcomes. The insights encapsulated within the report
empower decision-makers to make informed choices, steering solar energy integration
strategies based on the forecasted solar energy data.

5. Solar power forecast processing

Solar power forecast processing involves several steps to predict future solar
power generation accurately. These steps may include data collection, preprocessing,
feature engineering, model selection, training, and evaluation. Let us explore each
step in detail.

5.1 Data collection

First step in solar power forecast processing is to collect relevant data. This
includes historical solar power generation data, solar irradiance data, weather data
(e.g., temperature, humidity, wind speed), and any other relevant information that
can impact solar power generation.

5.1.1 Data sources for solar power forecasting

Data collection for solar power forecasting involves gathering relevant information
related to solar power generation, weather conditions, and other factors that can
influence solar energy production. Here are some key data sources for data collection:
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a. Solar Irradiance Data: Solar irradiance data measures the amount of solar
radiation received at a specific location over time. It is crucial for understanding
the solar energy potential in a region. Solar irradiance data can be collected from
ground-based solar measurement stations or satellite-based sources.

b. Weather Data:Weather data includes information such as temperature,
humidity, wind speed, and cloud cover. These parameters directly impact the
amount of solar energy that can be converted into electricity. Weather data is
typically obtained from weather stations, weather satellites, or meteorological
agencies.

c. Historical Solar Power Generation Data: Historical data on solar power
generation provides insights into past performance and helps identify patterns
and trends. This data can be collected from solar power plants, utility
companies, or energy regulatory authorities.

d. Geographical and Environmental Data: Geographical data, such as latitude
and longitude, and environmental data, such as terrain and shading patterns,
can be important for assessing the solar energy potential in a specific location.

e. Energy Demand Data: Understanding the energy demand patterns in a region
can help in optimizing solar power generation and integration with the grid.
Energy demand data can be obtained from utility companies or energy market
operators.

f. Economic Data: Economic data, such as energy prices and government
incentives or policies related to solar energy, can influence the decision-making
process for solar power projects.

g. Sensor Data: For real-time forecasting, sensor data from solar panels,
meteorological instruments, and other monitoring devices can be used to
continuously update the forecast .

It’s essential to ensure that the collected data is accurate, reliable, and
covers a sufficiently long period to capture seasonal variations and long-term
trends. Data from multiple sources may need to be integrated and standardized
before it can be used for forecasting models. Additionally, data privacy and
security considerations should be taken into account when collecting and handling
sensitive data.

5.2 Data preprocessing

Once the data is collected, it needs to be preprocessed to handle missing values,
outliers, and inconsistencies. Data preprocessing ensures that the data is in a suitable
format for further analysis.

Data preprocessing is a crucial step in preparing the collected data for use in solar
power forecasting models. It involves cleaning, transforming, and organizing the data
to ensure it is suitable for analysis and modeling. The main steps involved in data
preprocessing for solar power forecasting are as follows [15]:
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5.2.1 Data cleaning

This step involves identifying and handling missing or erroneous data. Missing
data can be imputed using various techniques such as mean imputation, interpolation,
or regression imputation. Outliers, which can significantly affect the forecasting
models, should also be detected and treated appropriately.

5.2.2 Feature selection

Selecting the most relevant features or variables from the collected data is essential
for accurate forecasting. Feature engineering may involve creating new features or
transforming existing ones to better represent the underlying relationships between
the data and the target variable (solar power generation).

5.2.3 Normalization and scaling

Data normalization and scaling ensure that all features are on the same scale,
preventing some features from dominating others during modeling. Common tech-
niques include Min-Max scaling and z-score normalization.

5.2.4 Handling categorical variables

If the data contains categorical variables, they need to be encoded into numerical
values using techniques such as one-hot encoding or label encoding to be suitable for
machine learning algorithms.

5.2.5 Time series splitting

Time series data requires special handling to avoid data leakage and preserve the
temporal order of the data. Time series splitting techniques, such as train-test splitting
or k-fold cross-validation with time-based folds, can be used for model evaluation.

5.2.6 Resampling and aggregation

Depending on the forecasting horizon (e.g., short-term or long-term forecasting),
data may need to be resampled or aggregated to match the desired prediction
intervals.

5.2.7 Handling seasonality and trends

Time series data often exhibits seasonal patterns and trends. These need to be
addressed, such as by applying seasonal decomposition techniques, differencing, or
detrending, to make the data stationary.

5.2.8 Dealing with multicollinearity

If there are highly correlated features in the data, dealing with multicollinearity is
essential to avoid model instability and unreliable coefficient estimates.
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5.2.9 Data splitting

After preprocessing, the data is split into training and testing sets for model
training and evaluation. Care should be taken to ensure the temporal order is
maintained during the split.

By carefully preprocessing the data, we can ensure that the solar power forecasting
models are accurate and reliable, providing valuable insights for effective energy
management and grid integration.

5.3 Feature engineering

Feature engineering involves selecting and creating relevant features from the
collected data. For solar power forecasting, features may include time of day, day of
the week, seasonality, weather conditions, solar irradiance, and historical solar power
generation values.

Feature engineering is a critical process in data analysis and machine learning that
involves creating new features or transforming existing ones to improve the perfor-
mance of predictive models. In the context of solar power forecasting, feature engi-
neering plays a vital role in capturing relevant information from the collected data and
enhancing the accuracy of forecasting models. Here are some common techniques
used in feature engineering for solar power forecasting:

5.3.1 Time-based features

Time is a crucial factor in solar power forecasting as solar energy generation varies
with the time of the day, month, and year. Creating time-based features such as hour
of the day, day of the week, month, and season can help the model capture daily and
seasonal patterns in solar power generation.

5.3.2 Weather variables

Weather conditions directly influence solar power generation. Including weather
variables such as temperature, humidity, cloud cover, and wind speed as features can
improve the model’s ability to account for weather-related fluctuations in solar energy
production.

5.3.3 Solar irradiance

Solar irradiance data measures the intensity of solar radiation reaching the Earth’s
surface and is a fundamental factor in solar power forecasting. Incorporating solar
irradiance data as a feature enables the model to capture the direct impact of sunlight
on solar panel efficiency.

5.3.4 Geographical features

The location of the solar power plant can influence solar energy production. Geo-
graphical features such as latitude, longitude, and elevation can be useful in capturing
location-specific patterns in solar power generation.
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5.3.5 Holiday and special event indicators

Solar power generation may be affected by holidays or special events that influence
energy demand patterns. Incorporating binary indicators for holidays or significant
events can help the model account for these factors.

5.3.6 Rolling window statistics

Calculating rolling window statistics such as moving averages or rolling standard
deviations can provide the model with information on short-term trends and varia-
tions in solar power generation.

5.3.7 Interactions between features

Interactions between different features can capture complex relationships that
may not be apparent when considering features individually. Creating interaction
terms can improve the model’s ability to capture non-linear relationships.

Selecting and engineering relevant features, we can enhance the predictive power
of solar power forecasting models and produce more accurate and reliable forecasts
for effective energy planning and management.

5.4 Model selection

Next, various forecasting models, such as time series models (e.g., ARIMA, STL),
machine learning models (e.g., ANN, SVM, Random Forest, Gradient Boosting), or
hybrid models, are considered. The choice of the model depends on the characteristics
of the data and the forecasting requirements.

These machine learning models provide powerful tools for forecasting various time
series data. However, selecting the most appropriate model depends on the specific
characteristics of the data and the forecasting requirements. It is essential to analyze
the data thoroughly, evaluate model performance, and consider computational
resources to make informed decisions during model selection.

5.4.1 Artificial neural networks (ANN)

Artificial Neural Networks are a class of machine learning models inspired by the
structure and functioning of biological neural networks. They consist of
interconnected nodes (neurons) organized into layers: input, hidden, and output
layers. Each connection between neurons has an associated weight that determines the
strength of the connection. During training, these weights are adjusted based on the
input data to minimize the error between the predicted and actual outputs [16].

ANN models are well-suited for capturing non-linear relationships in data, making
them effective in forecasting complex time series with intricate patterns. They can
process large datasets and identify dependencies that may be challenging for tradi-
tional statistical models [17].

An Artificial Neural Network is composed of interconnected neurons that process
input data to produce an output. The general equation for an artificial neuron (also
called a node) in a feedforward neural network is as follows:
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Output of Neuron ¼ Activation_Function
X

Weight_i ∗ Input_ið Þ þ Bias
� �

(7)

where:
Weight_i: Weight associated with the i-th input.
Input_i: Value of the i-th input.
Bias: A constant term that allows shifting the output.
The activation function introduces non-linearity to the model, allowing ANNs to

capture complex patterns in data. Common activation functions include sigmoid,
tanh, ReLU (Rectified Linear Unit), and softmax for different layers in the network.

5.4.2 Support vector machines (SVM)

Support Vector Machines are powerful supervised learning algorithms initially
designed for classification tasks. However, they have been adapted for time series
forecasting by formulating the problem as a regression task. SVMs aim to find a
hyperplane in a high-dimensional feature space that best separates data points
belonging to different classes or predicts continuous target values [18].

SVMs are particularly useful when the data exhibits clear boundaries between
different classes or patterns. They are known for their ability to generalize well with
limited data and handle high-dimensional feature spaces effectively [19].

In the context of time series forecasting, Support Vector Machines are adapted for
regression tasks. The basic equation of SVM for regression is:

y ¼ wT ∗ xþ b (8)

where: y: The predicted output (forecasted value).
x: The input features.
w: Weight vector.
b: Bias term.
During training, SVM aims to find the optimal values for the weight vector (w)

and bias (b) that minimize the loss function while satisfying the margin constraints.

5.4.3 Random forest

Random Forest is an ensemble learning technique that combines multiple decision
trees to make predictions. Each tree is constructed on a random subset of features and
data samples, reducing the risk of overfitting and improving generalization. The final
prediction is determined by aggregating the predictions of individual trees [14].

Random Forest is particularly robust against overfitting and can handle noisy data
effectively, making it a popular choice for forecasting tasks with diverse datasets [20].

Random Forest is an ensemble of decision trees. The predicted value (y) in a single
decision tree can be represented as:

y ¼ f xð Þ (9)

where:
x: The input features.
f: The decision tree function that maps the input features to the output (forecasted

value).
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In a Random Forest, multiple decision trees are constructed, each trained on a
random subset of data and features. The final prediction of the Random Forest is the
average (for regression) or majority vote (for classification) of the predictions made
by individual trees.

5.4.4 Gradient boosting

Gradient Boosting is another ensemble learning technique that sequentially builds
multiple weak learners, such as decision trees, to create a strong learner. Each subse-
quent tree is trained to correct the errors made by the previous ones, resulting in a
powerful model capable of capturing subtle patterns and reducing bias in the pre-
dictions [15].

Gradient Boosting is particularly effective when high accuracy is desired, and it is
widely used in various machine learning tasks, including time series forecasting.

Gradient Boosting is an iterative ensemble technique, where each iteration builds a
weak learner (often a decision tree) that corrects the errors made by the previous
learners. The final prediction of a gradient boosting model can be represented as:

y ¼ F xð Þ ¼ Σ f_i xð Þð Þ (10)

where: y: The predicted output (forecasted value).
x: The input features.
F(x): The overall prediction of the ensemble.
f_i(x): The individual weak learner (e.g., decision tree) in the ensemble.
During training, each new weak learner is fit to the negative gradient of the loss

function with respect to the ensemble’s current prediction. This process gradually
improves the model’s accuracy by reducing bias and capturing complex patterns in the
data.

5.5 Model training

After selecting the forecasting model, the data is divided into training and testing
sets. The model is trained using the training data, where it learns patterns and rela-
tionships between the features and solar power generation.

Once the appropriate forecasting model is selected, the next step is model training.
The available data is divided into two sets: the training set and the testing set. The
training set is used to train the forecasting model, enabling it to learn patterns and
relationships between the input features and the target variable, which in this case is
solar power generation.

During the training process, the selected forecasting model, whether it be an
ARIMA model, an Artificial Neural Network (ANN), a Support Vector Machine
(SVM), Random Forest, Gradient Boosting, or any hybrid model, is presented with
historical time series data. This data includes past solar power generation values and
relevant features, such as weather conditions, time of day, or historical power con-
sumption.

The model utilizes various optimization algorithms (e.g., gradient descent,
backpropagation, or ensemble methods) to iteratively adjust its internal parameters,
such as weights and biases in the case of ANN, or hyperplane in the case of SVM. The
objective is to minimize the difference between the model’s predictions and the actual
solar power generation values in the training set.
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The training process aims to find the best set of parameters that capture the
underlying patterns and dynamics in the data. It involves tuning the model’s
hyperparameters and adjusting its complexity to achieve optimal performance with-
out overfitting or underfitting the data.

To ensure the model’s effectiveness and generalization ability, it is crucial to
validate its performance on a separate testing set that the model has not seen during
training. This evaluation helps assess the model’s ability to make accurate predictions
on unseen data, which is crucial for reliable forecasting.

5.6 Evaluation metrics for forecasting models

Once the model is trained, it is evaluated using the testing data to assess its
performance. Common evaluation metrics include Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Correla-
tion Coefficient (R).

Evaluation metrics such as MAE, RMSE, MAPE, and correlation coefficient play a
vital role in assessing the accuracy and performance of solar power forecasting
models. By comparing the model’s predictions against actual data, these metrics pro-
vide valuable insights into the model’s strengths and weaknesses. Researchers and
forecasters use these metrics to select the most suitable forecasting model and contin-
uously improve its performance, thereby enhancing the efficiency and reliability of
solar power forecasting.

Accurate evaluation of forecasting models is crucial to assess their performance
and reliability. Various metrics are used to measure the accuracy and effectiveness of
solar power forecasting models. Here are the key evaluation metrics commonly
employed:

5.6.1 Mean absolute error (MAE)

MAE measures the average absolute difference between the actual and predicted
values. It provides a measure of the magnitude of errors without considering their
direction. Lower MAE values indicate better model performance [21]. The formula for
calculating MAE is:

MAE ¼ 1=nð Þ ∗ Σ∣Actual� Predicted∣ (11)

where: n is the number of data points in the evaluation dataset.
Actual represents the actual solar power generation values.
Predicted represents the predicted solar power generation values.

5.6.2 Root mean square error (RMSE)

RMSE is another popular metric for forecasting accuracy. It measures the square
root of the average of squared differences between actual and predicted values. RMSE
gives more weight to large errors and is sensitive to outliers [16].

The formula for calculating RMSE is:

RMSE ¼ √ 1=nð Þ ∗ Σ Actual� Predictedð Þ2� �
(12)
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5.6.3 Mean absolute percentage error (MAPE)

MAPE measures the percentage difference between actual and predicted values.
It provides a relative measure of the forecasting accuracy, making it useful for com-
paring models across different datasets. The formula for calculating MAPE is:

MAPE ¼ 1=nð Þ ∗ Σ∣ Actual� Predictedð Þ=Actual∣ ∗ 100 (13)

5.6.4 Correlation coefficient (R)

Correlation coefficient assesses the linear relationship between actual and
predicted values. It measures how well the forecasted values follow the actual trend. A
correlation coefficient close to 1 indicates a strong positive linear relationship, while
close to �1 indicates a strong negative linear relationship [22]. The formula for
calculating the correlation coefficient is:

R ¼ Σ Actual�MeanðActualÞð Þ ∗ Predicted�MeanðPredictedÞð Þð Þ=
√ Σ Actual�MeanðActualÞð Þ2� � ∗√ Σ Predicted�MeanðPredictedÞð Þ2� �� �

(14)

where: Mean(Actual) is the mean of the actual solar power generation values.
Mean(Predicted) is the mean of the predicted solar power generation values.

5.7 Model optimization

Model optimization is a pivotal step in achieving accurate and reliable forecasting
outcomes. Hyperparameter tuning and advanced optimization techniques ensure
that forecasting models perform optimally by fine-tuning their parameters and
reducing overfitting. With the ability to generate more accurate forecasts,
decision-makers can make informed choices that contribute to the success of their
businesses and organizations.

In the realm of data-driven decision-making, forecasting models play a pivotal role
in predicting future trends and outcomes. Accurate forecasting is crucial for a wide
range of applications, including financial analysis, weather forecasting, supply chain
management, and predictive maintenance. However, achieving optimal forecasting
performance can be a challenging endeavor due to various complexities inherent in
the data and the need to strike a delicate balance between model complexity and over
fitting. To address these challenges and elevate forecasting accuracy, model optimiza-
tion techniques have become indispensable tools. This article explores the significance
of model optimization, focusing on hyper parameter tuning and advanced techniques
that contribute to improved forecasting accuracy.

Forecasting models typically depend on hyper parameters, which are
configuration settings set before model training. Hyper parameters govern the
behavior of the model during the training process, and their appropriate
selection significantly impacts the model’s forecasting performance. However,
identifying the optimal combination of hyper parameters that yields the best
results is a formidable task. In cases where the model’s performance falls short of
expectations, model optimization techniques are employed to fine-tune the model and
enhance its accuracy.
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5.7.1 Hyperparameter tuning

Hyper parameter tuning, also known as hyper parameter optimization, is a critical
aspect of model optimization. It involves a systematic search for the best set of hyper
parameter values that maximize the model’s predictive performance. Common tech-
niques for hyper parameter tuning include:

• Grid Search: Grid search performs an exhaustive search over a predefined hyper
parameter grid, evaluating the model’s performance for each combination of
hyper parameters. While this approach can be computationally intensive, it
guarantees that the best combination is identified from the specified grid.

• Random Search: Random search samples hyper parameter values randomly
within predetermined ranges, allowing for a more efficient exploration of the
hyper parameter space. Random search is particularly useful when the search
space is extensive, as it can yield satisfactory results with fewer iterations.

• Bayesian Optimization: Bayesian optimization leverages probabilistic models to
predict the performance of different hyper parameter configurations. Based on
these predictions, the next set of hyper parameters to evaluate is selected.
Bayesian optimization efficiently explores the hyper parameter space and
converges to optimal configurations with fewer iterations.

5.7.2 Advanced model optimization techniques

In addition to hyper parameter tuning, advanced model optimization techniques
can substantially enhance forecasting accuracy. Some key techniques include:

• Regularization: Regularization techniques, such as L1 (Lasso) and L2 (Ridge)
regularization, introduce penalty terms to the model’s loss function. This helps
prevent overfitting, ensuring that the model generalizes well to unseen data and
produces more reliable forecasts.

• Ensemble Learning: Ensemble learning combines multiple base models to make
predictions. Techniques like Bagging (e.g., Random Forest) and Boosting (e.g.,
Gradient Boosting) can reduce bias and variance, leading to more robust
forecasts.

• Feature Selection: Feature selection methods help identify the most relevant
features for forecasting. Removing irrelevant or redundant features can improve
model efficiency and accuracy.

5.8 Model deployment and forecasting

Machine learning models have revolutionized solar power generation forecasting,
offering more accurate and reliable predictions. By harnessing historical solar energy
data and relevant features, these models empower decision-makers to optimize grid
operations, manage energy demand and supply, and transition towards a cleaner and
greener energy future. Continued research and development in machine learning
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techniques for solar power forecasting will undoubtedly play a pivotal role in achiev-
ing a sustainable and renewable energy landscape.

Once the machine learning model is trained and evaluated, it is ready for deploy-
ment. For future solar power generation predictions, the model takes the relevant
input features for the forecast period, such as weather data and time of day, and
generates the solar power generation forecast.

Machine learning-based solar power generation forecasting offers several advan-
tages over traditional methods. These include better accuracy, adaptability to chang-
ing conditions, and the ability to incorporate diverse data sources for improved
predictions [23].

As machine learning algorithms continue to evolve and the availability of solar
energy data grows, the accuracy and reliability of solar power generation forecasting
will further improve. Moreover, advancements in cloud computing and edge com-
puting enable real-time forecasting, enabling better grid management and integration
of solar power into the energy mix.

5.9 Post-processing for solar power prediction

The forecasting results may undergo post-processing to address any remaining
biases or inconsistencies and ensure the forecast is realistic and reliable.

Post-processing is a critical step in the solar energy forecasting workflow, refining
model predictions, and ensuring realistic and reliable forecasts. By applying bias
correction, persistence correction, ensemble post-processing, and NWP post-
processing techniques, forecasters can enhance the accuracy and reliability of solar
energy forecasts. The ongoing advancements in forecasting models and post-
processing methodologies will continue to play a pivotal role in maximizing the
benefits of solar energy and driving the transition towards a greener and more sus-
tainable energy future.

Solar energy forecasting relies on models that consider various factors, such as
solar irradiance, weather conditions, and historical solar generation data. Despite the
advances in forecasting techniques, models may still exhibit biases due to uncer-
tainties in weather patterns, data quality, or model limitations. Post-processing is
crucial to fine-tune these forecasts, ensuring they align closely with actual observa-
tions and are suitable for practical applications.

5.9.1 Post-processing techniques

a. Bias Correction: Bias correction is a widely used technique in solar energy
forecasting to eliminate systematic errors or biases in the forecasted solar
generation. By comparing historical observations with forecast outputs, bias
correction methods adjust the forecast values to align with the actual generation
patterns.

b. Persistence Correction: Persistence refers to the assumption that solar
generation will remain constant over short time intervals. Persistence correction
techniques adjust the forecast based on the persistence of historical generation
patterns, especially during periods of stable weather conditions.

c. Ensemble Post: Processing: Ensemble forecasting involves generating multiple
model runs or scenarios. Ensemble post-processing combines these individual
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forecasts to create a more reliable and accurate ensemble forecast. Techniques
like model output statistics (MOS) or quantile mapping are employed for
ensemble post-processing.

d. Numerical Weather Prediction (NWP) Post: Solar energy forecasting often
relies on weather data from numerical weather prediction models. NWP post-
processing techniques refine the weather data to improve its accuracy, leading
to better solar energy forecasts.

5.10 Evaluation and verification

Evaluating and verifying the effectiveness of post-processing techniques is crucial
for optimizing forecast accuracy. Careful assessment against historical observations
and independent datasets allows forecasters to identify the most suitable post-
processing methods for specific forecasting tasks.

5.11 Realizing reliable solar energy forecasts

Post-processing techniques are instrumental in enhancing the reliability of solar
energy forecasts. By addressing any remaining biases or inconsistencies in the fore-
casted solar generation, post-processing ensures that the forecasts align closely with
actual solar energy production. This reliability inspires confidence in grid operators,
utilities, and renewable energy stakeholders, enabling them to make informed deci-
sions based on the forecasted solar energy data.

5.11.1 Visualization and reporting for solar power forecasted results

Visualization and reporting are indispensable components of solar power
forecasting. They transform complex data and model outputs into easily understand-
able and actionable information for stakeholders. By providing valuable insights
through visualizations and comprehensive reports, solar power forecasting enables
informed decision-making, enhances grid management, and optimizes renewable
energy integration. Continuous monitoring and updating of the forecasting model
ensure adaptability to changing conditions, reinforcing the forecast’s accuracy and
reliability.

Visualizations are essential tools for communicating complex information in a
clear and intuitive way. In solar power forecasting, visualization techniques are
employed to display forecasted solar generation patterns, trends, and uncertainties.
Common visualization methods include [24].

a. Line Plots: Line plots are used to display time-series data, showing the
forecasted solar power generation over a specific time period. These plots
provide a clear view of how solar generation varies with time, highlighting any
seasonal or daily patterns.

b. Heatmaps: Heatmaps are useful for presenting the spatial distribution of solar
generation forecasts. They show how solar energy production varies across
different geographical locations, allowing stakeholders to identify areas with
high solar potential.
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c. Scatter Plots: Scatter plots are employed to compare forecasted solar
generation against actual observations. They help assess the accuracy of the
forecasts and identify any biases or inconsistencies [25].

d. Error Plots: Error plots illustrate the forecast errors, indicating the differences
between forecasted values and actual observations. Understanding these errors
is crucial for refining forecasting models and improving future predictions.

5.12 Comprehensive reporting

A comprehensive report is an integral part of the solar power forecasting process.
It provides stakeholders, including grid operators, renewable energy developers, and
policymakers, with a detailed overview of the forecasting methodology, results, and
uncertainties. The report typically includes:

a. Data Description: A clear description of the data used for forecasting,
including weather data, historical solar generation, and any additional features
employed in the models.

b. Forecasting Model: A detailed explanation of the forecasting model chosen, the
hyperparameter settings, and the training process.

c. Evaluation Metrics: The evaluation metrics used to assess the forecast
accuracy, such as Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), or Mean Absolute Percentage Error (MAPE).

d. Visualization of Forecast Results: Visualizations, as discussed earlier, are
included in the report to convey forecasted solar generation patterns and trends
[26].

e. Uncertainty Analysis: A discussion of the uncertainties associated with the
forecasts, considering weather uncertainties and limitations of the forecasting
model.

6. Applied case study: Solar energy forecasting for a solar power plant

6.1 Data description

• Dataset Period: 1 year

• Time Interval: Hourly

• Data Variables: Solar power generation (kWh), Solar Irradiance (W/m2),
Ambient Temperature (°C), Time of Day

6.2 Methods used

• Artificial Neural Networks (ANN)
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• Support Vector Machines (SVM)

• Random Forest

• Gradient Boosting

Step 1: Data Collection and Preprocessing: Historical data for solar
power generation, solar irradiance, and weather variables were collected for a solar
power plant over one year. The data were preprocessed to handle missing values and
outliers.

Step 2: Feature Engineering: The dataset was divided into input features (solar
irradiance, ambient temperature, and time of day) and the target variable (solar
power generation).

Step 3: Model Selection: Four machine learning models (ANN, SVM, Random
Forest, Gradient Boosting) were selected for solar energy forecasting.

Step 4: Data Splitting: The dataset was split into a training set (70%) and a testing
set (30%).

Step 5: Model Training: Each model was trained using the training dataset.
Step 6: Model Evaluation: The models were evaluated on the testing dataset using

the following evaluation metrics, as Table 1.
Step 7: Results and Comparative Analysis: Results and Conclusion.
The study employed four machine learning models, namely Artificial Neural

Networks (ANN), Support Vector Machines (SVM), Random Forest, and Gradient
Boosting, for solar energy forecasting. The models were evaluated based on various
metrics including Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
Mean Absolute Percentage Error (MAPE), and Correlation Coefficient (R). The eval-
uation results are summarized in Table 1.

Among the considered models, the Gradient Boosting model demonstrated supe-
rior performance, achieving the lowest values for MAE, RMSE, and MAPE, and the
highest correlation coefficient. This indicates that the Gradient Boosting model pro-
vided the most accurate predictions of solar power generation, outperforming the
other models.

Line plots were generated to visualize the actual vs. predicted solar power genera-
tion for each model, as shown in Table 2. Figure 4 provides a visual comparison of the
actual solar power generation and the performance of each method.

Model Mean absolute
error (MAE)

Root mean square
error (RMSE)

Mean absolute
percentage error

(MAPE)

Correlation
coefficient (R)

Artificial neural
networks (ANN)

45.32 60.28 7.2% 0.92

Support vector
machines (SVM)

52.18 68.50 8.5% 0.88

Random forest 42.65 56.78 6.8% 0.94

Gradient boosting 41.92 55.92 6.5% 0.95

Table 1.
Comparing the evaluation metrics for prediction models.
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The successful application of machine learning models, specifically the Gradient
Boosting model, for solar energy forecasting was demonstrated in this case study. The
results highlight the potential of machine learning techniques in improving the accu-
racy of solar energy predictions based on historical solar irradiance and weather data.

Step 8: Visualization (Optional): Line plots were created to visualize the actual
vs. predicted solar power generation for each model.

Artificial Neural Networks (ANN), Support Vector Machines (SVM), Random
Forest, and Gradient Boosting. The table shows hypothetical values for actual solar
power generation and predicted solar power generation for different time intervals:

Step 9: The case study demonstrates the successful application of machine learning
models for solar energy forecasting. The Gradient Boosting model provided the most
accurate predictions of solar power generation based on historical solar irradiance and
weather data. The results highlight the potential of machine learning techniques in
improving solar energy forecasting accuracy and aiding in efficient energy manage-
ment and grid integration.

Please note that the results presented here are hypothetical and do not represent
actual data or real-world forecasting performance. In real cases, actual data and
appropriate metrics would be used for evaluation.

Time 1 2 3 4 5

Actual Solar Power 50 52 54 56 58

Predicted SP (ANN) 47.5 48 48.5 49 49.5

Predicted SP (SVM) 52 53.2 53.8 54.5 55

Predicted SP (RF) 48.8 49.5 48 49.8 50.2

Predicted SP (GB) 49.5 50.2 51 51.8 52.5

ANN, Artificial Neural Networks; SVM, Support Vector Machines; Random Forest and Gradient Boosting.

Table 2.
Compared to the actual solar power generation for the performance of each method.

Figure 4.
Compared to the actual solar power generation for the performance of each method.
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7. Conclusion

The chapter underscores the significance of machine learning in enhancing solar
power prediction accuracy and its potential contribution to efficient energy manage-
ment and grid integration. Further research and development in this field can lead to
advancements in renewable energy utilization and sustainable energy practices.

By leveraging accurate solar power forecasts, stakeholders and power system
operators can make more informed decisions regarding resource allocation, grid sta-
bility, and efficient energy management. This, in turn, contributes to the effective
integration of renewable energy sources into the power grid.

The integration of artificial intelligence (AI) techniques in solar power prediction
holds great promise for enhancing forecast accuracy and ensuring a reliable energy
supply. This study has explored the application of AI models, including Artificial
Neural Networks, Support Vector Machines, Random Forest, and Gradient Boosting,
to accurately forecast solar power generation.

Continuous monitoring and updating of the forecast model are crucial to adapt to
changing weather conditions and data patterns. This ensures the accuracy and reli-
ability of solar power predictions over time.

The integration of AI techniques in solar power prediction contributes to the
optimization of solar power generation and its seamless integration into the global
energy mix. By leveraging accurate forecasts, decision-makers can make informed
choices, leading to more efficient energy management and the realization of a greener
and more sustainable future.

This chapter serves as a valuable contribution to the field of solar power forecast-
ing, highlighting the potential of AI models in improving forecast accuracy and
supporting the adoption of renewable energy sources. Continued advancements in AI
techniques and their integration into solar power prediction will play a significant role
in achieving a more sustainable and environmentally friendly energy landscape.
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Chapter 3

Parameter Identification of Solar
Cell Mathematical Models Using
Metaheuristic Algorithms
Hamdy M. Sultan, Mahmoud A. Mossa
and Almoataz Y. Abdelaziz

Abstract

Lately, there has been a notable interest among researchers in constructing a
precise mathematical representation using experimentally gathered data from solar
cells and photovoltaic (PV) modules. This representation serves as a means to simu-
late and assess the performance of PV systems. In this study, the Walrus Optimization
Algorithm (WaOA) and Cheetah optimizer (CO) were employed to deduce the
unknown parameters inherent in various modes of solar cells and PV modules, spe-
cifically the single-diode model (SDM) and double-diode model (DDM). Further-
more, the evaluation criterion for this work involved measuring the route mean
square error (RMSE) between the simulated outcomes generated using identified
parameters for each mathematical model and the actual voltage derived from mea-
surements of solar cells and PV modules. Notably, a comprehensive statistical analysis
was carried out to validate the efficacy and stability of the WaOA and CO algorithms.
These algorithms were compared against other optimization techniques for their
effectiveness in solving the optimization challenge of accurately estimating the design
parameters of PV systems. The outcomes of simulations and the extensive statistical
assessment substantiate the superior performance and reliability of the Walrus
Optimization Algorithm in effectively extracting parameter values from diverse PV
modules under various operational scenarios.

Keywords: optimization, solar cells, PV modules, walrus optimization algorithm,
cheetah optimizer, SDM, DDM

1. Introduction

The finite nature of fossil fuel reserves and their excessive utilization have not only
put human health at risk but have also had detrimental effects on the ecological
balance. Hence, the imperative to develop sustainable energy alternatives has become
exceedingly urgent [1, 2]. Among the array of renewable energy options available such
as solar, hydro, wind, geothermal, and biomass energy, these sources are either prac-
tically inexhaustible or can be replenished in the short term [1, 3].
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Solar energy, in particular, stands as a formidable candidate, possessing an
immense reservoir of energy capable of satisfying the entire spectrum of contempo-
rary human energy needs. This potential has propelled the integration of solar energy
into diverse applications, including desalination processes, heating installations, and
the generation of photovoltaic (PV) power [4–6]. Given its dual attributes of cleanli-
ness and widespread accessibility, PV power generation has evolved into a pivotal
initiative within the larger framework of advancing renewable energy sources [3].

Notably, the pursuit of PV power generation aligns seamlessly with the growing
demand for clean electrical energy across various sectors. As a result, it has assumed a
critical role in the ongoing efforts to cultivate and expand renewable energy alterna-
tives. The trajectory of shifting toward PV power generation underscores a proactive
stance in mitigating the environmental repercussions of fossil fuel reliance while
fostering a sustainable energy landscape for the future [7, 8].

Doping, the intentional introduction of impurities into semiconductor materials,
plays a pivotal role in modulating electronic properties, and understanding its effects is
essential for precise solar cell parameter extraction. The study presented in [9] explores
the correlation between secondary electron doping contrast and Fermi level pinned
surfaces in silicon samples, prepared through HF-based wet-chemical treatment or
focused ion beam micromachining. This investigation employs energy-resolved SE
imaging techniques and finite element analyses, revealing surface band-bending effects
and challenging the conventional belief exclusively associating doping contrast with
patch fields or adventitious metal-semiconductor contacts. In a complementary
approach, Chee et al. [10] introduce a Monte Carlo model incorporating a finite ele-
ment method and a ray tracing algorithm to detail the computation of electrostatic
fields inside and outside a semiconductor for doping contrast in a scanning electron
microscope (SEM). This numerical method effectively distinguishes effects on doping
contrast arising from surface band bending, external patch fields, and macroscopic
external fields in the SEM detection system. The presented theory aligns well with
experimental observations, advancing our understanding of doping contrast mecha-
nisms and facilitating quantitative dopant profiling using the SEM. Building on this
foundation, Chee [11] discusses doping contrast utilization with the secondary electron
(SE) signal in the SEM for quantitative dopant profiling in alignment with International
Roadmap for Semiconductors (ITRS) requisites. This research specifically focuses on
site-specific dopant profiling of silicon p–n junction specimens, employing a
30-kV Ga + focused ion beam (FIB) for trench side-wall cutting and successive milling
at lower voltages in a dual-beam FIB/SEM system. Despite the protective platinum
strap’s effective control of “curtaining” ‘effects, reduced doping contrast from the side
wall, compared to a cleaved surface with the same ion beam energy, is attributed to
material effects from prior milling steps and differences in geometries between milling
and imaging. The study introduces novel principles underlying the doping contrast
mechanism, considering ion implantation depth and concentration, and amorphization
damage as linear functions of the final milling voltage. Although reaching only half the
contrast achievable from a freshly-cleaved specimen, the research demonstrates the
feasibility of site-specific dopant profiling in situ in the SEM with doping contrast
increasing as milling voltage decreases. The continual advancement of semiconductor
fabrication processes stands as a cornerstone in the relentless pursuit of highly efficient
inorganic photovoltaic (PV) technologies. Through dedicated research and develop-
ment efforts, these processes have undergone refinement, unlocking new frontiers in
the realm of solar energy harnessing. This evolution is pivotal in enhancing the overall
performance, durability, and cost-effectiveness of inorganic PV systems.
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The effective design, forecasting, sizing, diagnostics, and maintenance of photo-
voltaic (PV) system installations rely heavily on a dependable and precise model
encompassing the cell, module, and PV array components [12, 13]. In the realm of
literature, three distinct models have been established, each featuring one, two, or
three diodes. These models are characterized by parameters that demand accurate
extraction. The process of obtaining these diverse parameters remains both critical
and complex. To tackle this challenge, numerous techniques have emerged in schol-
arly works to deduce the optimal PV parameters. These techniques span numerical,
analytical, evolutionary, and hybrid methodologies [14, 15].

Among the various methods available for parameter extraction in PV systems, the
equation governing the current-voltage characteristic holds particular promise. This
equation encapsulates the entirety of PV properties and parameters. However, its
transcendental nature introduces complexities in solving it, transforming it into an
optimization predicament. In navigating this complexity, metaheuristic approaches
have surfaced as particularly effective tools. Their demonstrated success in addressing
a spectrum of challenges across diverse domains attests to their potential in resolving
the intricacies of PV parameter optimization. As such, these metaheuristics offer a
promising avenue to surmount the complexities inherent in solving the multifaceted
equation governing PV behavior, advancing the domain of PV system analysis and
application [16, 17].

The precision of modeling holds significant importance in the evaluation,
enhancement of efficiency, fault analysis, and simulation of photovoltaic (PV) sys-
tems. These systems, composed of aggregated PV cells, are typically subject to model-
ing through equivalent circuits, encompassing single-diode (SDM), double-diode
(DDM), and triple-diode (TDM) models [18]. These circuit representations effec-
tively emulate the electrical attributes of PV cells. In these models, parameters are
present in quantities of five, seven, and nine, respectively, demanding precise
extraction [19].

Intricacies arise with the expansion of diode numbers, which introduces a greater
number of parameters needing extraction, thus intensifying computational complex-
ities. The challenges posed encompass not only the heightened intricacy of solutions
due to multiple unknown variables but also the interdependence between electrical
values, which results in a highly implicit function. Furthermore, the incorporation of
exponential functions within the characteristic equations exacerbates the difficulty in
solving nonlinear attributes [20, 21].

These compounded challenges coalesce to create a perplexing puzzle when it
comes to establishing accurate PV models. This enigma requires innovative
approaches that can surmount the intertwined complexities of parameter extraction
and nonlinear behavior to arrive at models that truly reflect the intricacies of PV
systems [21].

In the research conducted by Senturk and Eke [22], a novel empirical relationship
was utilized to extract parameters within the framework of the one-diode model. This
empirical approach involves determining the initial value of the series resistance using
the slope of the I-V curve as given by the producer. However, acquiring numerical
data for the current-voltage characteristic is often not readily available upon purchas-
ing a photovoltaic (PV) module. To address this limitation, image processing tech-
niques are necessitated to extract the data from technical documentation, yet the
accuracy of this extracted data may vary.

Analytical methods exhibit effectiveness under standard weather conditions;
however, their reliability diminishes in the face of fluctuating atmospheric conditions
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[23]. Furthermore, approximating equations in these methods substantially compro-
mises result accuracy. On a different note, Tossa et al. [24] introduced an innovative
approach for accurately modeling the SD model of a PV module. This method,
implemented in the MATLAB/Simulink environment, relies on the Levenberg-
Marquardt algorithm. Another avenue, proposed by Ghani et al. [25], involves scruti-
nizing the current-voltage characteristic to derive parameter values. Here, a model of
five formulas is solved utilizing the Newton-Raphson method. Yet, this algorithm not
only requires solving a system of equations but also entails handling a Jacobian matrix
composed of twenty-five first and second derivative terms, adding a layer of
complexity to the process.

The notable drawback of numerical methods, such as the Newton-Raphson, is their
demand for extensive calculations to ensure convergence. This method’s effectiveness
diminishes as the number of parameters that have to be identified rise. Despite their
efficiency, the sluggish convergence of numerical techniques does not always guaran-
tee optimal outcomes as they might converge to a local minima. Additionally, selecting
appropriate initial conditions for these methods can be challenging [23]. In light of
these complexities, the field continues to seek innovative solutions that can offer
improved accuracy and efficiency in parameter extraction while addressing the limi-
tations of current techniques.

In the study by Oliva et al. [25], a novel approach utilizing a chaotic artificial bee
colony (ABC) algorithm was introduced to estimate parameters for photovoltaic (PV)
panels. The innovation in this proposed chaotic ABC lies in the replacement of the
arbitrary number in the onlooker bee phase with a number produced through chaos
theory. This chaotic number is obtained from a carefully selected chaotic map, with
the tent map being identified as the optimal choice and subsequently incorporated
into the proposed chaotic ABC algorithm. A comprehensive exploration of various
chaotic maps was conducted, culminating in the selection of the tent map. Yang
introduced a novel, versatile population-based optimization technique called hunger
games search (HGS) in 2021 [26]. This optimizer demonstrated scalability and adapt-
ability, making it suitable for a wide range of optimization challenges spanning appli-
cation and structural domains. A notable feature of HGS was its Laplacian-based
crossover search mechanism, which effectively diversified solution exploration.
Additionally, the integration of the Nelder-Mead (NM) local search technique height-
ened the precision of convergence toward the optimal solution. Building upon the
original HGS framework, the study extended its capabilities by incorporating the
Laplacian mechanism and the Nelder-Mead simplex strategy. This extension resulted
in an enhanced parameter optimization performance, successfully applied to the
realm of static photovoltaic models. The proposed method emulated the hunger-
induced behavior and attributes of individuals within the optimization process.
Despite HGS finding utility in various engineering problems, its potential in parame-
ter estimation for solar PV models had remained untapped. To address this gap, a new
algorithm emerged, combining elements from the simplified swarm optimizer (SSO)
with the Nelder-Mead simplex approach. This innovative fusion led to a dual
achievement of precise and swift parameter identification for both static deflection
model (SDM) and dynamic deflection model (DDM). The novel approach exhibited
the capability to finely balance accuracy and speed in parameter estimation, demon-
strating its potential for practical applications in the solar PV domain [26].

The simulation outcomes, utilizing both SD and DD models, clearly underscore the
advantages of the developed chaotic ABC over a range of competing techniques. These
include the conventional ABC, a chaotic variant of the particle swarm optimization
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(PSO), the artificial bee swarm optimization algorithm, simulated annealing, the cat
swarm optimization algorithm, teaching learning-based optimization algorithm, and
the harmony search method. To provide concrete context, the study employed real-
world case studies involving an RTC-France PV cell, a polycrystalline panel labeled
STM6-120/36, and a monocrystalline PV panel denoted as STM6-40/36.

The utilization of the chaotic ABC technique presents a significant step forward in
enhancing the accuracy and efficiency of parameter estimation for PV panels. By
harnessing the dynamics of chaos theory, this approach demonstrates its capacity to
outperform several established optimization methods. As the realm of PV technology
continues to evolve, these innovative methodologies hold the potential to substantially
contribute to the improvement of PV system performance, thereby promoting the
broader adoption of renewable energy sources.

The work by Oliva et al. [27] presents a notable advancement by introducing a
chaotic variation of the whale optimization algorithm (WOA) for the precise estima-
tion of parameters associated with photovoltaic (PV) cells and panels. The foundation
of the WOA draws inspiration from the behavioral patterns of whales. In the WOA
framework, during each iteration, the repositioning of whales involves the generation
of a random number within the range of [0,1]. This number then dictates the likeli-
hood of selecting either a spiral model or a shrinking encircling mechanism for
adjustment. The innovation in the proposed chaotic WOA lies in the replacement of
this randomly generated number with a value generated through chaos theory.

In the pursuit of the optimal chaotic map for this endeavor, four distinct chaotic
maps—namely, Singer, Sinusoidal, Logistic, and Tent—underwent testing. Through
rigorous evaluation, the singer map emerged as the most fitting choice for integration
into the chaos-based WOA, proving its mettle in tackling the parameter estimation
challenge effectively. Simulation outcomes, encompassing both single- and double-
diode models, serve as compelling evidence of the superiority of the proposed chaos-
infused WOA over a spectrum of cutting-edge optimization algorithms. Among these
algorithms are the ABC, PSO, artificial bee swarm optimization, simulated annealing,
bird mating optimization, differential evolution, and harmony search. These results
underscore the potential and advantages of this chaotic WOA variant, showcasing its
ability to surpass established optimization techniques in addressing the complexities
of parameter estimation in PV systems. By harnessing the power of chaos theory
within optimization frameworks, this research contributes to the refinement of
parameter estimation processes within the domain of photovoltaics. Such innovative
methodologies are integral to advancing the efficiency and effectiveness of PV
systems, aligning with the broader global push for sustainable and renewable energy
sources.

The study conducted by Mughal et al. [28] introduces an innovative approach that
merges the strengths of PSO and SA to estimate parameters related to PV cells. In the
proposed PSO-SA hybrid framework, the advantages of both algorithms are combined
by applying the operators of PSO and SA to the search agents during each iteration.
The optimization algorithm employs the RMSE as its primary objective. The simula-
tion outcomes, which involve an RTC-France PV cell encompassing both single- and
double-diode models, unequivocally demonstrate the superior performance of the
proposed hybrid algorithm when compared to PSO, SA, harmony search (HS), and
pattern search techniques.

Furthermore, in Gong et al. [29], a distinct application of PSO is presented. This
version utilizes varying acceleration coefficients and inertia weights for parameter
extraction of PV modules. In the research by Fathy and Rezk [30], an imperialistic
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competitive algorithm (ICA) is leveraged to estimate circuit model parameters
associated with PV modules. The investigation spans both single- and double-diode
models, considering various PV technologies such as mono-crystalline, polycrystal-
line, thin-film, and amorphous materials. The incorporation of amorphous on
crystalline materials into the analysis signifies recognition of the evolving landscape of
PV technologies. This nuanced exploration becomes particularly pertinent in instances
where focused ion beam (FIB) processing of crystalline materials is employed,
resulting in hybrid structures that merge the characteristics of amorphous and crys-
talline semiconductors. The interplay between these materials introduces a unique set
of challenges and opportunities, making them a crucial consideration in the develop-
ment and application of single- and double-diode models [31]. The attainments
underscore the superiority of ICA over several alternative optimization techniques,
including pattern search, chaos-based PSO, bird mating optimization, adaptive
differential evolution (DE), ABSO, SA, and HS [30].

These studies collectively highlight the ongoing quest for refining parameter
estimation methodologies in the realm of photovoltaics. The fusion of optimization
algorithms and the exploration of their variations underscore the significance of devis-
ing novel strategies to enhance the accuracy and efficiency of PV system performance
analysis. As the renewable energy landscape continues to expand, the advancements in
parameter estimation techniques contribute to the broader mission of harnessing sus-
tainable energy sources and minimizing environmental impact. In addition to the
research mentioned, other studies have also employed distinct algorithms for the
parameter extraction of photovoltaic cells. For instance, Ram et al. [32] introduced an
enhanced version of the flower pollination algorithm, reference [33] utilized the fire-
works optimization technique, and Abdelghany et al. [34] employed the water cycle
algorithm for this purpose. While metaheuristics offer several advantages over alterna-
tive parameter estimation methods, it is important to acknowledge a potential pitfall
known as premature convergence, especially when dealing with complex PV cell
parameter estimation issues, which often exhibit multimodal characteristics.

Premature convergence occurs when metaheuristic algorithms become trapped in
local optima instead of reaching the global optimum. This concern is particularly
relevant in the context of PV cell parameter estimation, where the problem’s multi-
peaked nature can hinder the ability of algorithms to find the most accurate parameter
values. This challenge is further evidenced by the relatively high root mean square
error (RMSE) values observed in the application of various metaheuristic algorithms
to PV cell parameter estimation [35].

To address this issue of premature convergence, extensive efforts are being dedi-
cated to developing strategies that enhance the performance of metaheuristic tech-
niques in the context of PV cell parameter estimation. Researchers are actively
exploring techniques to ensure that these algorithms have a higher likelihood of
escaping local optima and converging toward more accurate parameter values. By
mitigating the premature convergence problem, the potential of MAs can be maxi-
mized in accurately estimating the parameters of PV cells and modules.

In this chapter, the investigation revolves around the utilization of both theWalrus
Optimization Algorithm (WaOA) [36, 37] and the Cheetah optimizer (CO) [38] as
potent tools for addressing the intricate challenge of PV cell parameter estimation.
By employing these advanced optimization techniques, the aim is to enhance the
accuracy and efficiency of estimating parameters crucial to the performance of
photovoltaic cells. The Walrus Optimization Algorithm, characterized by its unique
nature-inspired strategies, and the Cheetah optimizer, drawing inspiration from the
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swift and agile cheetah’s hunting behaviors, are harnessed as innovative approaches to
tackle the complexities inherent in this parameter estimation problem.

The remainder of this chapter follows a structured organization. In Section II, the
formulation of the PV cell parameter estimation problem is presented. Section III
introduces the methodologies that have been proposed. Moving forward, the fourth
section presents the outcomes and analysis. Ultimately, the fifth section contains the
concluding remarks to wrap up the discussion.

2. Models of solar cells

A mathematical model must be utilized to determine the solar cell properties
analytically in order to construct the solar cells and PV modules. Diode-based
electronic circuits are employed to model solar cells based on this. Along with the TD
circuit, which was very recently developed, the SD and DD models are the most often
used tools for determining the parameters of solar cells and PV modules [38].

2.1 Single-diode model

The model, which can be seen in Figure 1, simply has one diode that is utilized to
parallelize the current source Iph, which displays the photo-generated electrical
current. The diode functions as a rectifier of half-waves. The nonphysical accessibility
factor of the ideality of the diode is taken into account by the mathematical
framework [39]. The model has a fairly straightforward structure, making it simple to
put into practice. The biggest problem with this straightforward model is that there
are only five parameters that need to be carefully specified.

According to Figure 1, It can be expressed as;

It ¼ Iph � Isd � Ish (1)

where It, Iph, Isd, and Ish imply the total current, photo current, diode current, and
current through shunt resistance, respectively.

Figure 1.
Equivalent circuit for SD model.
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In order to create a more accurate model for the inside functioning of the diode,
Shockley’s equivalent diode formula might be used. Eq. (1) is capable of being rewrit-
ten as follows [39, 40]:

It ¼ Iph � Isd exp
q Vt þ RsItð Þ

nkt

� �
� 1

� �
� Vt þ RsIt

Rsh
(2)

Where Vt implies the model terminal voltage, Isd implies reverse saturation current
of the diode, Rs implies the resistance in series connection, Rsh implies the resistance in
the parallel combination, n denotes the ideality factor, q implies the electron charge
(q ¼ 1:602 ∗ 10�23 J=K), k implies the Boltzmann constant (k ¼ 1:380 ∗ 10�23 J=K),
and T implies cell temperature i. Therefore, precise estimation of these variables,
which will be carried out using various optimization strategies in the subsequent
sections, is necessary to ensure the model operates properly.

2.2 Double-diode model

The double-diode (DD) model, shown in Figure 2, is suggested as a replacement
for the single-diode model, which is typically not a good option for use with a variety
of applications [41]. The solar spectrum containing sufficient energy irradiating the
p-n junction can induce a photocurrent that changes the junction potential. The excess
electron-hole pairs generated can forward bias the p-n junction [42, 43]. The surface
or interface traps/charges also play a crucial role in the nonideal behavior of the solar
cell [44, 45], as well as the carrier distributions following the electric potentials
influenced by the solar irradiation [46].

As seen in Figure 2, there are two diodes: one serves as a rectifier, and the other is
utilized to account for the effects of the solar cell’s non-idealities plus the current
generated from the combination. The following equation could be used to depict the
current balance in the corresponding circuit of Figure 2 [40]:

It ¼ Iph � Id1 � Id2 � Ish (3)

Figure 2.
Equivalent circuit for DD model.
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where Id1, and Id2 signify current of the first and second diodes. The two diodes’
internal configuration is updated using the Shockley equivalency. Therefore, Eq. (3)
can be rewritten as given [40],

It ¼ Iph � Id1 exp
q Vt þ RsItð Þ

n1kt

� �
� 1

� �
� Id2 exp

q Vt þ RsItð Þ
n2kt

� �
� 1

� �
� Vt þ RsIt

Rsh

(4)

where Id1 and Id2 symbolize saturation currents for the two diodes in the circuit. n1,
n2 signify ideality factors. The DD model contains seven unidentified parameters that
have to be precisely determined, that is, Rs,Rsh, Iph, Id1, Id2,n1, and n2:

2.3 Problem formulation

It is feasible to approach each of the mathematical models for the SD and DD as
an optimization issue, with the best values for the unidentified model parameters
serving as the answer. To determine if the optimized parameters meet their real
values or not, a fitness function needs to be initially applied. Examining the level of
agreement between the I-V curves listed in the datasheet of an actual solar cell and
those anticipated regarding the identified parameters of the theoretical
empirical model is another way to determine the quality of the methodology used
for estimation. Consequently, the fitness function for the SD can be illustrated
as [37, 41]:

f SD Vt, It, xð Þ ¼ It � x3 þ x4 exp
q Vt þ x1Itð Þ

x5kt

� �
� 1

� �
� Vt þ x1It

x2
(5)

meanwhile, for the DD model, the fitness function is written as:

f DD Vt, It, xð Þ ¼ It � x3 þ x4 exp
q Vt þ x1Itð Þ

x6kt

� �
� 1

� �
þ x5 exp

q Vt þ x1Itð Þ
x7kt

� �
� 1

� �
� Vt þ x1It

x2
(6)

Where Vt, and It imply the experimental values of voltage and current of the solar
cell. For SD model, x ¼ Rs,Rsh, Iph, Isd, n

� �
symbolizes the solution vector, wherein the

case of the DD model the solution vector is x ¼ Rs,Rsh, Iph, Id1, Id2, n1, n2
� �

. The func-
tions fSD, fDD assess and investigate how closely each circuit’s outcomes resemble those
obtained through experimental measurement.

The cost function is then developed based on identifying the parameters that
provide the least amount of error between the actual, as determined by observations,
and the predicted, as determined by diode models. The cost function can then be
defined using a set of NE samples to broaden the search until global optima are found
and expressed as:

RMSE xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XNE

c¼1
f cM Vc

t , I
c
t , x

� �� �2
r

(7)

whereM aids in determining, which diode model should be used and RMSE stands
for root mean square error. The Walrus Optimization Algorithm (WaOA) and
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Cheetah optimizer (CO) are employed to determine the best values for the design
parameters of various PV modules and solar cells that produce the objective function’s
least value.

3. Optimization algorithms

3.1 Walrus optimization algorithm (WaOA)

A large marine mammal with flippers, the walrus has a patchy distribution in the
Arctic Ocean and the waters surrounding the North Pole in the Northern Hemisphere
[35, 36]. Large tusks and whiskers on adults make them easy to recognize. Walruses
are sociable animals who spend the most of their time searching for benthic bivalve
mollusks to feed on the sea ice. The tusks on walruses, which are this animal’s most
noticeable trait, are very long. These are elongated canines that are present in both
male and female animals and can grow to be up to 1 m long and 5.4 kg in weight. In the
late summer, walruses prefer to move to outcrops or rocky beaches when the weather
warms and the ice begins to melt. These migrations are quite dramatic and include
large gatherings. Due to their size and tusks, the polar bear and the killer whale (orca)
are the walrus’ only two natural predators.

Walruses exhibit intellectual behavior in their social interactions and everyday
actions. Three of these clever actions stand out as being the most inescapable:

1.Directing the individuals to eat under the direction of the tribe member with the
longest tusks: During the search process, the algorithm is guided toward areas of
greatest potential by keeping track of the best population participant. The
dominant walrus, which is distinguished by having a longer tusk, is in charge of
leading the other walruses in the social life of the species. This method involves
moving walruses, which significantly alters their posture. The algorithm’s
capacity for global search and exploration is improved by simulating these huge
displacements [35, 36].

2.Migration toward rocky beaches: The migration of walruses in response to summer’s
warming temperatures is one of their normal behaviors. Walruses shift
dramatically in this process, going toward rocky outcrops or beaches. The position
of other walruses is taken into account as a walrus’s migration destination in the
WaOA simulation for a walrus. One of these locations is arbitrary pointed out, and
the walrus migrates in its direction [35, 36]. WaOA’s architecture, which follows
this tactic, enhances the possibilities of global search and discovery. The foraging
approach used by the strongest walrus differs from the migratory strategy in that
the population update process is not allowed to rely just on one individual, such as
the population’s best member. This updating procedure stops the algorithm from
stalling in local optima as well as premature convergence.

3.Fight or run away from predators:When battling their predators, such as polar
bears and killer whales, walruses adopt a protracted chasing technique. The
walrus position is only little altered by this chasing activity, which occurs in a
tiny area nearby. WaOA’s capacity to seek locally and exploit to converge to
better solutions is therefore improved by imitating the minor movements of the
walrus by looking for good locations throughout the struggle.
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3.1.1 Initialization

Walruses serve as the search population in WaOA, and a potential answer to
the optimization problem is represented by each walrus in WaOA. The potential
values for the problem variables are thus determined by each walrus’ location
inside the search space. Walrus populations are arbitrarily initialized at the start
of WaOA deployment. Utilizing (8), we arrive at this WaOA population
matrix [35, 36].

X ¼

X1

⋮
Xi

⋮

XN

2
6666664

3
7777775
¼

x1,1 ⋯ x1,j ⋯ x1,m
⋮ ⋱ ⋮ ⋰ ⋮
xi,1

⋮

xN,1

⋯

⋱

⋯

xi,j ⋯ xi,m

⋮ ⋰ ⋯

xN,j ⋯ xN,m

2
66666664

3
77777775

(8)

Where N denotes the number of walruses, m denotes the number of choice
variables, X signifies the population of walruses, Xi signifies the ith walrus (candidate
solution), and xi,j signifies the value of the jth decision variable recommended by the
ith walrus. For the fitness function derived from walruses, the generated values are
described in (9).

F ¼

F1

⋮
Fi

⋮

FN

2
6666664

3
7777775
¼

F X1ð Þ
⋮

F Xið Þ
⋮

F XNð Þ

2
66666664

3
77777775

(9)

where F signifies the vector of the fitness function and Fi signifies the value of the
fitness function calculated depending on the ith walrus.

3.1.2 Mathematical modeling of WaOA

3.1.2.1 Phase 1: feeding strategy (exploration)

Walruses eat a wide variety of marine creatures, including more than 60 different
species of sea cucumbers, tunicates, soft corals, tube worms, prawns, and different
mollusks. The walrus prefers benthic bivalve mollusks, particularly clams, and forages
by grazing on the ocean floor while using its active flipper movements and sensitive
vibrissae to search out and find food. The more powerful walrus in the group, the one
with the largest tusks, leads the other walruses in their search for nourishment [35, 36].
The degree of accuracy of the fitness values of the potential solutions is comparable to
the size of the tusks in walruses. The most powerful walrus in the team is pointed out
as the best candidate solution having the best fitness. The WaOA’s exploration effec-
tiveness in the global search is increased as a result of the walruses’searching behavior,
which results in varied scanning regions of the search field. Following the direction of
the most important member of the group, (10) and (11) are used to mimic the process
of changing the walruses’ position depending on the grazing strategy [35, 36]. A new
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position for the walrus is first created in this process using (10). If this novel location
increases the fitness value, it replaces the earlier location; this idea is modeled in
Eq. (11).

xP1
i,j ¼ xi,j þ randi,j � SWj � Ii,j � xi,j

� �
(10)

Xi ¼ XP1
i , FP1

i <Fi

Xi, else

(
(11)

where XP1
i denotes the updated position for the ith walrus according to the feeding

stage, xP1
i,j denotes its jth dimension, FP1

i denotes the fitness value, randi,j signifies
arbitrary numbers ranged from 0 to 1, SW denotes the finest potential solution related
to the most powerful walrus, and Ii,j is an integer number selected randomly between
1 and 2. Ii,j is utilized to enhance the algorithm’s exploration capability so that if it is
selected as 2, it creates more significant and broader changes in the location of
candidates compared to the case when the value is selected as 1, which presents the
normal condition of this displacement. These conditions help enhance the global
searching of the WaOA in escaping from the local optima and finding the global
optimal spot in the problem-solving area.

3.1.2.2 Phase 2: migration

Due to the rising temperature of the air in the final days of summer, one of the
normal behaviors of walruses is their movement to outcrops or rocky beaches. The
WaOA uses this migratory process to direct the walruses in the search space to find
appropriate regions in the search space [32, 33]. Employing (12) and (13), this behav-
ioral process is quantitatively modeled. This modeling makes the assumption that each
walrus moves to a different walrus location (chosen at random) in a different region
of the search field. As a result, the suggested alternative location is initially derived
using (12). Then, in accordance with (13), the most recent position supersedes the
earlier one of the walrus if it increases the fitness value [35, 36].

xP2
i,j ¼

xi,j þ randi,j � xk,j � Ii,j � xi,j
� �

, Fk <Fi

xi,j þ randi,j � xi,j � xk,j
� �

, else

(
(12)

Xi ¼ XP2
i , FP2

i < Fi

Xi, else

(
(13)

where XP2
i denotes the updated location of the ith walrus according to the

migration stage, xP2
i,j denotes the jth dimension, FP2

i denotes the fitness value, Xk,
k∈ 1, 2, … ,Nf g and k 6¼ i, signifies the position of the pointed walrus toward the ith
walrus will move, xk,j denotes the jth dimension, and Fk denotes its fitness value.

3.1.2.3 Phase 3: running out and fighting against predators (exploitation)

Polar bear and killer whale assaults are constant threats to walruses. The walruses
move around in the area around where they are located as a result of their technique of
evading and combating these predators. The WaOA’s ability to utilize this aspect of
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walrus behavior in the small search area surrounding potential solutions is enhanced.
Since this process takes place close to each walrus’s location, in the WaOA algorithm,
it is considered that this range of walrus location change takes place in a neighborhood
centered on walruses that has a specific radius. The radius of this neighborhood is
thought of as a variable because it initially begins at its greatest value and then
decreases throughout the algorithm repetitions because, in the early iterations, prior-
ity is given to global search to attempt to find the ideal area in the search field. Because
of this, a variable radius with algorithm iterations has been created in this stage of
WaOA using localized lower/upper boundaries [34, 35]. For the purpose of simulating
the scenario in WaOA, a neighborhood is assumed to be present around each individ-
ual walrus, which is then given an arbitrary new location inside that neighborhood
using steps (14) and (15). Then, in accordance with (16), this new location substitutes
the prior one if the fitness value is enhanced [35, 36].

xP3
i,j ¼ xi,j þ lbtlocal,j þ ubtlocal,j � rand � lbtlocal,j

� �
,

�
(14)

Local Bounds :
lbtlocal,j ¼

lbj
t
,

ubtlocal,j ¼
ubj
t
,

8>><
>>:

(15)

Xi ¼ XP3
i , FP3

i < Fi

Xi, else

(
(16)

where lbj and ubj denote the lower and upper boundaries of the jth variable,
lbtlocal,jand ubtlocal,j denote local lower and local upper boundaries allowable for the jth

variable. XP3
i denotes its jth dimension. FP3

i denotes its fitness value. Figure 3 displays
the flowchart for implementing the WaOA.

3.2 Cheetah optimizer (CO)

3.2.1 Inspiration

The cheetah (Acinonyx jubatus) stands out as the primary feline species and is
recognized as the fastest land animal, inhabiting the central regions of Iran and Africa.
These remarkable creatures are capable of reaching speeds exceeding 120 kilometers
per hour. Their exceptional speed and agility are attributed to their physical charac-
teristics, including a long tail, slender legs, lightweight build, and a flexible spine.
Cheetahs are known for their swiftness, adept stealth, rapid pursuit during hunting,
and distinctive spotted coats. However, it is important to note that these visually-
oriented predators cannot sustain their high-speed actions for extended periods, lim-
iting their chases to less than half a minute [37]. After capturing their prey, the
cheetah’s speed dramatically drops from 93 kilometers per hour (58 mph) to 23
kilometers per hour (14 mph) in just three strides. To overcome this limitation,
cheetahs employ a keen sense of observation, often perching on small branches or hills
to scan their surroundings for potential prey. Their ability to blend seamlessly into
high, dry grass due to their unique coat pattern further aids in successful hunting.
Cheetahs typically target animals such as Thomson’s gazelles, impalas, antelopes,
hares, birds, rodents, and young calves of larger herbivores [37]. The hunting strategy
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Figure 3.
Flowchart of WaOA technique.
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of cheetahs involves slow, stealthy approaches to minimize the distance between
themselves and their prey. They maintain a crouched posture and patiently wait for
the prey to draw near as they tend to abandon the hunt if detected. The preferred
minimum distance for a successful chase ranges from 60 to 70 m (200 to 230 feet),
but it increases to 200 meters (660 feet) if they fail to remain concealed adequately.
The pursuit itself typically lasts about 60 seconds, covering an average distance
ranging from 173 m (568 feet) to 559 m (1834 feet).

To bring down their prey, cheetahs employ a tactic involving a swift forepaw strike
to the prey’s rump, causing the prey to lose its balance. Subsequently, the cheetah
utilizes its strength to overpower the prey and affect a swift kill. The cheetah’s
muscular tail plays a pivotal role in achieving sharp turns during the pursuit. Gener-
ally, it is easier for them to hunt animals that have strayed from their herds or display
less vigilance. Predation outcomes are influenced by various factors such as the age
and gender of the cheetah, the number of predators involved, and the level of alert-
ness displayed by the prey. Additionally, coalitions of cheetahs or mothers with cubs
tend to be more successful in hunting larger prey.

Biological studies have revealed that cheetahs possess extraordinary spinal
flexibility and long tails that contribute to their physical balance. Their shoulder
blades, which are not connected by collarbones, enable a wider range of shoulder
movement, enhancing their hunting prowess. Despite these exceptional attributes, it
is important to acknowledge that not all cheetah predations result in a successful
capture.

3.2.2 Mathematical model and algorithm

It is probable to spot prey when a cheetah patrols or examines its immediate
surroundings. The cheetah may sit in one spot after spotting its victim, watch until it
approaches, and then launch an assault. There are phases of rushing and capturing in
the attack phase. The cheetah might cease hunting for a number of reasons, including
power limitations, the ability to catch prey quickly, etc. The CO algorithm’s overall
foundation is the intelligent application of different hunting techniques during hunt-
ing sessions [37].

• Searching: Cheetahs must seek, either actively or passively, throughout
their territory (search space) or the surrounding region in order to find their
prey.

• Sitting and waiting: If the prey is discovered but the circumstances are not ideal,
cheetahs may wait for the prey to approach or for the situation to improve;

• Attacking: This tactic entails two crucial steps.

◦ Rushing: The cheetah will move as quickly as possible toward its victim when
it intends to attack.

◦ Capturing: The cheetah approached its prey while moving quickly and
maneuverably.

• Leave the prey and return home: Two scenarios are taken into consideration for this
tactic. (1) If the cheetah is unable to catch its prey, it should move or go back to
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its home zone. (2) It may move to the location of the most recent prey found and
search the area around it if there has been no successful hunting activity for a
period of time (Figure 4).

3.2.3 Searching strategy

Cheetahs hunt for prey using one of two methods: either vigorously patrolling the
territory while sitting or standing to scan the surroundings. When the prey is
numerous and grazing while traversing the plains, scanning manner is more appro-
priate. However, if the prey is dispersed and active, it is preferable to choose an active
style that consumes much power than the scan method. A series of such searching
strategies may, therefore, be chosen by the cheetah throughout the time of hunting,
subject to the state of the prey, the area’s coverage, and the cheetahs’ own health [37].

Mathematically, the cheetah’s states (other configurations) create a population,
and each victim is a spot of a decision variable matching to the best option
(see Figure 5a). Then, using an arbitrary step size and the present position of each
cheetah in the arrangement as a starting point, this equation is suggested:

Xtþ1
i,j ¼ Xt

i,j þ r�1
i,j � αti,j (17)

Where Xt
i,j signifies the present location of cheetah i i ¼ 1, 2, … , nð Þ in group j

(j = 1, 2, … , D), n implies the population size, and D denotes the size of the problem.
Xtþ1

i,j i signifies the following locations of cheetah i in arrangement j, respectively. t
implies the present hunting time, and T is the maximum duration of hunting period.
r�1
i,j and αti,j denote the random number and step length for cheetah i in group j.

Figure 4.
Hunting behaviors of cheetah: (a) Scanning, (b) sitting and waiting, (c) rushing, and (d) capturing.
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3.2.4 Sitting and waiting strategy

The prey might become visible to a cheetah’s area of vision, while it is in the
searching mode. Each move the cheetah makes in this scenario has the potential to
alert the victim to his or her existence and cause the prey to flee. The cheetah may
decide to ambush to get sufficiently nearby to the prey in order to allay this worry (by
reclining on the ground or lurking amid the bushes) [37]. As a result, the cheetah waits
until the prey gets closer while maintaining his or her posture (see Figure 5b). The
following can be used to simulate this behavior:

Xtþ1
i,j ¼ Xt

i,j (18)

where Xtþ1
i,j and Xt

i,j denote the modified and present locations of cheetah i in
arrangement j. In order to boost hunting effectiveness (find a better solution), this
method needs the CO approach to refrain from changing all cheetahs concurrently in
each group. This can help the algorithm avoid early convergence.

Figure 5.
(a–d) Graphical representation of cheetah’s hunting strategies.

63

Parameter Identification of Solar Cell Mathematical Models Using Metaheuristic Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.1004044



3.2.5 Attacking strategy

A cheetah runs to the prey at maximum speed when it intends to attack. The prey
eventually becomes aware of the cheetah’s onslaught and starts to flinch. As seen in
Figure 5c, the cheetah swiftly chases the prey in the line of interception. The cheetah
tracks the prey’s location and modifies its course so that it blocks the prey’s path at a
certain point. The prey has to flee and change its location quickly in order stay alive
because the cheetah has only traveled a short interval from it at full speed, as
illustrated in Figure 5d, that is. the cheetah’s upcoming location is close to the prey’s
last position [37]. During this phase, the cheetah captures the prey by moving quickly
and maneuvering about. Each cheetah in a group hunt has the ability to change
positions depending on the location of the leader or nearby cheetah and the location of
the prey. Simply put, all of cheetahs’ attacking strategies can be defined numerically
as follows:

Xtþ1
i,j ¼ Xt

B,j þ ri,j � βti,j (19)

where Xt
B,j denotes the present location of the animal in group j. It is the present

optimal location of the population. ri,j and βti,j signify the turning coefficient and
interaction coefficient related to the cheetah i in group j.

Based on the hunting behaviors of cheetahs, the proposed CO algorithm incorpo-
rates the following assumptions and strategies:

3.2.5.1 Individual representation

In the CO algorithm, each row in the population represents a cheetah in
different states. Each column corresponds to a specific arrangement of cheetahs
concerning the prey, representing the best solution for each decision variable.
Cheetahs emulate the behavior of tracking their prey (the best value for a variable).
To identify the optimal solution, cheetahs must successfully capture the prey in
each arrangement. A cheetah’s performance is assessed through its fitness in all
arrangements with higher performance indicating a greater likelihood of successful
hunting.

3.2.5.2 Diverse reactions

Just as real cheetahs exhibit different reactions during group hunting, the CO
algorithm allows each cheetah to be in various states in each arrangement. Some may
be in attack mode while others are in searching, sitting-and-waiting, or attacking
modes. Energy levels of cheetahs are considered independent of the prey, and the
algorithm introduces random parameters to prevent premature convergence during
extensive evolution processes. These random variables act as an energy source for the
cheetahs during the hunting process.

3.2.5.3 Random behavior

The behaviors of cheetahs during searching and attacking strategies are assumed to
be entirely random, ensuring diversity in the search. In contrast, during the rushing
and capturing phases, the prey changes direction abruptly. Randomization parameters
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model these movements, and varying step lengths and interaction factors with
random variables contribute to an effective optimization process.

3.2.5.4 Adaptive strategy

The choice between searching and attacking strategies is random, but searching
becomes more likely as a cheetah’s energy decreases. Initial steps may be dedicated to
searching, while attacking is preferred for larger values of time (t) to achieve better
solutions. The selection of strategies is influenced by random factors and energy
considerations, much like the cheetah’s behavior in the wild.

3.2.5.5 Scanning and sitting-and-waiting

In the CO algorithm, scanning and sitting-and-waiting strategies are considered
equivalent, indicating that a cheetah (search agent) remains stationary during the
hunting period.

3.2.5.6 Leader adaptation

If the lead cheetah consistently fails in hunting, a randomly selected cheetah’s
position is changed to the last successful hunting position (i.e., the prey’s location).
This approach maintains the prey’s position among a small population and strength-
ening the exploration phase.

3.2.5.7 Energy limitations and home range

Each group of cheetahs in the CO algorithm has a time limit for hunting due to
energy constraints. If a group fails in a hunting period, they abandon the current prey
and return to their home range (initial position). The leader’s position is also updated.
This strategy helps prevent getting stuck in local optimum solutions.

3.2.5.8 Iterative evolution

In each iteration of the CO algorithm, a subset of the population actively partici-
pates in the evolutionary process.

These assumptions and strategies in the CO algorithm draw inspiration from the
behavior of cheetahs during hunting, aiming to create an effective optimization tech-
nique that mimics their adaptability, randomness, and energy considerations in the
quest for optimal solutions.

The fundamental stages of the CO algorithm can be depicted through the pseudo-
code outlined in Algorithm 1, drawing inspiration from cheetah hunting tactics and
underlying assumptions.

Algorithm 1: The CO methodology

Specify the problem data, dimension (D), and the initial population size (n).
Create the initial population of cheetahs Xi i ¼ 1, 2, … , nð Þ and assess the fitness of
each cheetah.
Set the starting solutions for the population’s home, leader, and prey positions.
t ! 0
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it ! 1
MaxIt ! maximum nubmer of iterations
T ! 60� D

10
while it≤MaxIt

Randomly select m individuals (2≤m≤ n)
for each individual i
Define its neighbor agent
for each random arrangement j∈ 1, 2, … ,Df g
Calculate ri,j, α, β,H
r2, r3 ! random numbers between 0, 1½ �
if r2 ≤ r3

r4 ! 1random numbers between 0, 3½ �
if r4 ≤H

Determine the updated position of a member using (19)
Else

Determine the updated position of a member using (17)
End

Else
Determine the updated position of a member using (18)

End
End

Revise the solutions of the member and the leader.
End
t ! tþ 1
if t> rand� T the leader’s position remains unchanged for a certain time, then
execute the strategy of abandoning the current prey and returning to the home
location, followed by adjusting the leader’s position.
End
it ! itþ 1
Modify the prey (global best) location

End

4. Results and discussion

The validation process of the introduced WaOA and CO optimization algorithms
involved the precise determination of optimal parameters for various PV models. To
achieve this, the estimating models, specifically the single-diode model (SDM) and the
double-diode model (DDM), were leveraged to compute the PV characteristics, creating
power-voltage curves and current-voltage profiles. A comprehensive comparative anal-
ysis was undertaken, juxtaposing the estimated performance of each module, both inter-
module and against the reference datasheet values of the assessed cells and modules.

The application of the proposed optimization algorithms extended to a range of
commercial solar cells and PV modules. This encompassed a standard silicon solar cell
from RTC France and the Photo Watt-PWP 201 PV module. Precise measured data
from multiple manufacturers’ datasheets and references (cited as Refs. [42, 43])
served as the foundational input for these evaluations.

In configuring the optimization process, each of the proposed techniques adhered
to a standardized setup. The maximum iteration count was capped at 200 iterations,
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while each population was composed of 20 search agents. The upper and lower limits
of the parameters have to be identified are tabulated in Table 1. To anchor the entire
validation procedure, the MATLAB R2018a platform was utilized, providing a robust
and reliable foundation for executing and assessing the optimization algorithms.

In this comprehensive validation procedure, the proposed WaOA and CO optimi-
zation algorithms have been rigorously evaluated and benchmarked against
established models. The utilization of diverse PV modules, combined with standard-
ized optimization parameters and a trusted computational platform, underscores the
meticulous nature of this research effort. The results obtained from this meticulous
validation endeavor contribute to the veracity and robustness of the optimization
techniques introduced in this study.

4.1 R.T.C. France solar cell

In this study, the researchers employed a novel WaOA and CO optimization
technique to identify the parameters of two distinct models of R.T.C. France solar
cells. The I–V characteristic curves of the R.T.C. France solar cell were obtained from
existing literature sources [41, 42]. To refine the parameters of the SDM (Single-
Diode Model) and DDM (Double-Diode Model), the WaOA and CO optimization
techniques were employed. The results, including those from the CO-based SDM and
WaOA-based SDM models, are tabulated in Table 2. This table also encompasses
parameter estimates from alternative optimization methods such as An.5-Pt. [44], LW

SDM and DDM PV module

Min Max Min Max

Iph (A) 0 1.00 0 2.00

Isd (μA) 0 1.00 0 50.00

Rs (Ω) 0 0.50 0 2.00

Rsh (Ω) 0 1000 0 10,000

n1, n2, n3 1.00 2.00 1.00 50.00

Table 1.
Boundary limits for the optimized parameters in solar cell models.

Technique Iph (A) Isd (μA) Rs (Ω) Rsh (Ω) n RMSE

WaOA 0.7607879 0.310682709 0.03654698 52.889880 1.47726717 7.730062E-04

CO 0.760772 0.32384593 0.036366463 53.8160016 1.48143923 7.7912E-04

TGA [16] 0.7606 0.21656 0.0383 50.3996 1.4419 9.90895E-04

COA [15] 0.7607692 0.3083945 0.0365546 52.826661 1.4765477659 7.75467E-04

ABSO [46] 0.76080 0.30623 0.03659 52.2903 1.47583 9.9124E-04

HS [47] 0.7607 0.30495 0.03663 53.5946 1.47538 9.9510E-04

PSO [48] 0.7607 0.400 0.0354 59.012 1.5033 1.3900E-03

GA [49] 0.7619 0.8087 0.0299 42.3729 1.5751 1.8704E-02

Table 2.
Optimized parameters for R.T.C. France solar cell – SDM.
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[45], ABSO [46], Newton [50], CM [51], HS [47], PSO [48], GA [49], and PS [52].
Notably, the application of the proposed WaOA algorithm led to the lowest root mean
square error (RMSE) value of 7.730062E-04 for the SDM model.

Table 3 further presents outcomes from the utilization of the WaOA and CO
techniques to extract parameters from the DDM of the R.T.C. FRANCE solar cell. In
order to validate the effectiveness of the employed techniques, this table includes
results from other methods such as ABSO [46], HS [47], PSO [48], GA [49], ABC
[53], SBMO [54], SSO [55], and MSSO [55]. The results underscore the superior
performance of the CO optimization technique, displaying a minimal RMSE objective
function value of 7.631566E-04.

Furthermore, the study conducted a comprehensive comparison of the SDM and
DDMmodels utilizing both the WaOA and CO optimization strategies. Figure 6

Figure 6.
Convergence curves for WaOA and CO for RTC France solar cell: (a) SDM and (b) DDM.
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graphically illustrates the convergence patterns of the RMSE objective function for both
SDM and DDMmodels of the R.T.C. France solar cell. Notably, the DDMmodel
exhibited faster andmore efficient convergence compared to the SDMmodel. To validate
the accuracy of the identified parameters and the efficacy of the proposed optimization
methodologies. Moreover, the study depicted the characteristics of the studied solar cell
by plotting the estimated parameters against the measured ones for both SDM and DDM
models. These plots are presented in Figures 7 and 8, respectively.

To establish the robustness and reliability of the optimization techniques, the
researchers executed the optimization algorithms 20 times and recorded the best
minimum objective function from each run. Statistical analysis was performed,
encompassing metrics such as mean, standard deviation, relative error, as well as best
and worst values over the 20 implements. The results of this statistical study are
summarized in Table 4. Additionally, the final values of the fitness function through
the 20 times are graphically presented in Figure 9. This analysis convincingly

Figure 7.
Characteristics of RTC France solar cell SDM using WaOA: (a) I/V curve and (b) P/V curve.
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Figure 8.
Characteristics of RTC France solar cell DDM using WaOA: (a) I/V curve and (b) P/V curve.

SDM DDM

Index WaOA CO WaOA CO

Best 0.0007730062 0.0007791220 0.00076315 0.00077573785

Worst 0.000850113 0.0010605183 0.00113209 0.0014436476

Average 0.000785616 0.0008886448 0.00082953 0.0009957970

Median 0.000778313 0.000877633 0.00079522 0.0009532422

STD 0.002131738 0.008997239 0.00928636 0.0200651278

RE 0.326251792 2.81144352 1.73949234 5.67354655

RMSE 2.4304620e-05 0.0001403051 0.000112241 0.000294404

Table 4.
Statistical analysis of R.T.C. France solar cell for both SDM and DDM.
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demonstrates that the WaOA algorithm is a highly effective approach for addressing
the parameter identification optimization challenges across various mathematical
models of the R.T.C. France solar cell.

4.2 PHOTOWATT-PWP201 MODULE

To further validate the effectiveness of the employed WaOA and CO techniques,
an assessment was carried out to estimate the parameters for various mathematical
models of the Photowatt-PWP201 module. This module comprises 36 silicon in a
series combination, operating under conditions of 1000 W/m2 solar radiation and a
cell temperature of 45°C [42, 43]. This chapter aimed to not only assess the proposed
methodologies accuracy but also to compare its outcomes with alternative techniques
in literature.

Figure 9.
Values of RMSE over the 20 runs for WaOA and CO methods for RTC France solar cell: (a) SDM and (b) DDM.
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The prowess of the proposed algorithms was put to the test in parameter estima-
tion for the SDM concerning the Photowatt-PWP201 module. The findings are
detailed in Table 5, which additionally featured a comparative analysis against out-
comes from other methods, including Newton [56], PS [52], OIS [57], and 1DAB [45].
This comparison effectively demonstrated the COA’s superiority in contrast to the
other techniques. Notably, the application of WaOA yielded the lowest RMSE value of
0.00212629, indicating its exceptional performance.

To further solidify the validation process, both WaOA and CO algorithms were
employed to estimate parameters for the DDM of the Photowatt-PWP201 PV
module. The optimized DDM parameters achieved through WaOA and CO are
presented in Table 6. This table also facilitated a comparison between DDM-based
WaOA, DDM-based CO, and other techniques such as WDOWOAPSO [50],
GCPSO [58], TVACPSO [59], and ABC-DE [60]. The results highlighted the
clear supremacy of the suggested WaOA technique, reflected in the minimized RMSE
value of 0.00257992. Importantly, the cumulative results in Tables 5 and 6 substanti-
ated the WaOA algorithm’s efficacy and high precision in parameter extraction for
diverse models of the Photowatt-PWP201 module, showcasing a reduction in
RMSE value.

Technique Iph (A) Isd (μA) Rs (Ω) Rsh (Ω) n RMSE

WaOA 1.0316505 3.287862 1.2076800 872.238281 1.3978671 0.00212629

CO 1.0315416 3.394903 1.20431447 891.945365 1.4013906 0.00225002

TGA[16] 1.0263 9.5710 0.0298 6842.2 1.5255 0.00381949

COA [15] 1.0296281 4.8155440 1.1728971 2000 1.4395994 0.00362202

Newton [56] 1.0318 3.2875 1.2057 555.5556 1.3474016 0.7805

PS [52] 1.0324 3.1859 1.304 843.5233 48.2467 0.0127

OIS [57] 1.03674 3.1946 1.32897 1184.58 49.0435 0.004783

1DAB[45] 1.04276 3.4265 1.73762 948.845 49.2843 0.00536

Table 5.
Optimized parameters for Photowatt-PWP201 module – SDM.

Technique Iph (A) Isd1 (μA) Isd2 (μA) Rs (Ω) Rsh (Ω) n1 n2 RMSE

WaOA 1.034168 18.27992 1.13725 1.3265 561.174 3.44090 1.24156 2.5799E-03

CO 1.029743 6.457305 7.33164 1.1241 1587.47 1.42048 47.0336 4.9436E-03

TGA 1.0265 9.2998 2.2586 0.0301 6719.0 1.5225 1.4164 3.7559E-03

COA [15] 1.0265 9.2998 2.2586 1.2163 1019.78 1.34098 50 2.2090E-03

WDOWOAPSO [50] 1.03062 3.171702 5.00 1.2382 744.714 1.31730 1.31730 2.0465E-03

GCPSO [58] 1.032382 2.512916 1.00005 1.2392 744.715 1.31730 1.31693 2.0465E-03

TVACPSO [59] 1.031434 2.638124 1.00 1.2356 821.652 1.32099 2.77777 2.0530E-03

ABC-DE [60] 1.0318 0.32774 2.4305 1.2062 845.249 1.3443 1.3443 2.400E-03

Table 6.
Optimized parameters for Photowatt-PWP201 module – DDM.
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The convergence trends of the RMSE based on both WaOA and CO
optimization methods across the two proposed models are depicted in Figure 10. To
visually demonstrate the application of the optimized parameters in the SDM and
DDM, estimated I-V (Current-Voltage) and P-V (Power-Voltage) curves of the
Photowatt-PWP201 module were generated. These curves, derived from the CO
method, were compared with the experimental data, and the results are presented
in Figures 11 and 12 for SDM and DDM, respectively. These figures clearly depicted
the alignment between the estimated curves using the CO method and the
empirical data.

In order to establish the robustness of the proposed optimization techniques, a
statistical analysis was carried out. The final values of the fitness function through the
20 times are graphically presented in Figure 13. The outcomes of this analysis were
summarized in Table 7, demonstrating the CO algorithm’s favorable performance

Figure 10.
Convergence curves for WaOA and CO for Photowatt-PWP201 module: (a) SDM and (b) DDM.
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with respect to statistical indices such as SD and RE for both estimated models. This
comprehensive validation process solidified the CO algorithm’s reliability and effec-
tiveness in parameter extraction across different models of the Photowatt-PWP201
PV module.

5. Conclusion

In this chapter, we have harnessed the Walrus Optimization Algorithm (WaOA)
and the Cheetah optimizer (CO) to tackle the intricate optimization challenge of
determining parameters for solar cells and a variety of PV modules. To thoroughly
evaluate the effectiveness of our proposed optimization approach, we have leveraged
data from manufacturer datasheets and real-world measurements gathered from

Figure 11.
Characteristics of Photowatt-PWP201 module SDM using WaOA: (a) V/I curve and (b) V/P curve.
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literature sources. This comprehensive dataset encompasses diverse solar cells and PV
modules, accounting for varying solar radiation intensities and temperatures. Our
investigation has encompassed two distinct models—the single-diode model and the
double-diode model—for both solar cells and PV modules.

The outcomes resulting from the application of the WaOA and CO have been
systematically compared with findings previously documented in the literature
pertaining to alternative optimization methodologies. Notably, our proposed algo-
rithms have consistently outperformed others, consistently yielding optimal values for
the objective function, often quantified through root mean square error (RMSE). This
underscores the robustness and effectiveness of the Walrus Optimization Algorithm
and Cheetah optimizer in this context.

Furthermore, we have not limited our assessment to comparative analysis alone;
our exploration has delved deeper into the results. By subjecting the outcomes of solar

Figure 12.
Characteristics of Photowatt-PWP201 module DDM using WaOA: (a) V/I curve and (b) V/P curve.
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Figure 13.
Values of RMSE over the 20 runs for WaOA and CO methods for Photowatt-PWP201 module: (a) SDM and
(b) DDM.

SDM DDM

Index WaOA CO WaOA CO

Best 0.002126291 0.002250025 0.002579920 0.0049436296

Worst 0.04809182 0.009377722 0.047042367 0.009555128

Average 0.01895375 0.006957418 0.015732435 0.007914192

Median 0.015838395 0.007241249 0.009331317 0.008001565

STD 1.4961108 0.216848518 1.48913560 0.14630791

RE 158.27992 41.84303421 101.9606167 12.01774000

RMSE 0.0222667117 0.005160113 0.019587075 0.003295119

Table 7.
Statistical analysis of Photowatt-PWP201 module for both SDM and DDM.
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cell parameter optimization to both parametric and nonparametric statistical scrutiny,
we have fortified the confirmation of the efficacy of WaOA and CO in solving this
optimization puzzle. A significant achievement has been the remarkable alignment
between the V-I curves obtained through the optimized parameters and the
corresponding data from manufacturer datasheets. This alignment serves as a clear
indication of the validity of our approach.

For instance, when applied to the RTC France solar cell, the WaOA algorithm
produced the lowest root mean square error (RMSE) values, measuring at 7.730062E-
04 for the SDM model and 7.631566E-04 for the DDM model. Similarly, for the
Photowatt-PWP201 module, the WaOA algorithm achieved minimal values for the
objective function, measuring at 0.00212629 for the SDM and 0.00257992 for the
DDM. These results are a testament to the effectiveness and reliability of our proposed
optimization methods.

In summary, theWalrus Optimization Algorithm has proven its mettle by standing
alongside established optimization algorithms, firmly establishing itself as a formida-
ble contender for parameter extraction across a diverse range of solar cells and PV
modules. Through rigorous testing and analysis, we have substantiated the potential
of our methodology to make a significant contribution to the ongoing advancement of
solar technology optimization.

For future directions, it is worth considering the application of these optimization
algorithms to more complex solar systems, exploring potential enhancements in con-
vergence speed, and adapting the approach to real time, dynamic operational scenar-
ios for solar cells and PV modules. Additionally, the incorporation of machine learning
and artificial intelligence techniques for predictive modeling and optimization could
further advance the state of the art in solar technology.
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Chapter 4

Use of Concentrated Solar
Power Technology for a High
Temperature Processes: Case
Study of Uzbekistan
Mukhammad-Sultan Payzullakhanov, Rasul Akbarov
and Lola Suvonova

Abstract

The paper examines the state and prospects for the development of renewable energy
use in Uzbekistan, presents the specific features and conditions of concentrated solar
power (CSP) technology, analyzes the technological capabilities of high-temperature solar
furnaces as one of the promising areas of CSP technology, and notes specific scientific
directions in this area. A comparative analysis of the technical and optical-energy charac-
teristics of high-temperature solar furnaces of well-known research centers and their
application in solving of actual scientific and technical problems is carried out. The main
parameters and energy characteristics of the Uzbek 1000 kWt solar furnace in Parkent
(BSF) in comparison with the similar French (Odeillo) furnace are given. Special equip-
ment and stands installed in the focal zone of the furnace for melting, synthesis, heat
treatment and complex testing of various technical products in high-temperature
conditions are presented. By the example of the analysis of the process of quenching
high-temperature materials, some features of high-temperature processes are shown.

Keywords: Solar furnace, concentrator, heliostat, mirrors, focal zone, focal length,
energy distribution

1. Introduction

1.1 Renewable energy sources in Uzbekistan

Currently, the use of renewable energy sources (RES) is a priority in most coun-
tries of the world, including Uzbekistan. Such a global situation is caused by many
well-known objective factors, the main of which are: depletion of non-renewable
energy resources of the Earth, colossal emission of carbon dioxide into the atmo-
sphere, uneven distribution of fossil energy resources and different natural, geo-
graphical and climatic conditions of the countries of the world (the number of sunny
days, the presence of rivers, etc.), political and economic conjuncture and others.

85



Therefore, the intensive transition to the use of renewable energy sources is an
important stage in the development of global energy [1–5].

In Uzbekistan, despite the high potential of, for example, solar energy, major pro-
jects on the use of alternative energy sources have not been implemented until
recently. In 2020, the total installed capacity of renewable energy plants was 2 giga-
watts and almost 100% of this capacity was accounted for by hydroelectric power
plants [6]. In recent years, the situation has changed and now Uzbekistan pays special
attention to the use of renewable energy [4, 7, 8]. A number of important laws on
renewable energy have been adopted, an attractive investment climate has been
formed, etc. In 2021, a photovoltaic power plant with a capacity of 100 MW was
commissioned in Navoi region and in 2022 a similar station in the Samarkand region.
This year, investment agreements were signed between the Ministry of Investments
of Uzbekistan and ACWA Power, which provides for the commissioning of two solar
photovoltaic plants with a total capacity of 1400 MW in the Tashkent and Samarkand
regions and three energy storage systems with a total capacity of 1200 MW. It should
be noted that by 2030 it is planned to produce 35% of electricity from renewable
energy sources. To do this, 15,000 MW of capacity will be put into operation –

10,000 MW of solar power plants and 5000 MW of wind power plants [9].
At the same time, it should be noted that the introduction of small-scale develop-

ments (in power from several hundred watts to several hundred kilowatts) for
renewable energy, mainly for photovoltaic installations and thermal collectors, in
various organizations, in the agro-industrial sector, in social facilities, in individual
and rural farms and etc. is developing at an accelerated step [10].

1.2 Concentrated solar power technology

One of the promising areas of renewable energy use is the technology of concen-
trated solar power (CSP). This category mainly includes solar point-focus concentrators
(Dish), solar linear-focus concentrators (PTC, Fresnel) and tower-type solar stations. It
should be noted that these installations, in addition to wide practical applications, in
most cases are also unique scientific tools for conducting research in the field of high-
temperature processes. The disadvantages of such systems include the high complexity
of their installation and the high cost compared to photovoltaic systems. In addition,
concentrating installations operate from direct solar radiation and therefore it is almost
mandatory to have a tracking system for the Sun and therefore regions with a predom-
inance of direct solar radiation are preferable for such tasks.

Despite these disadvantages of CSP technologies, due to the possibility of this
technology to achieve high temperatures, up to 3000 degrees, CSP technologies have
found wide applications in the world. For example, as noted in [11], CSP is a highly
competitive technology for generating electricity, research in the field of solar mate-
rials science is known and relevant, in particular the successes of scientists from
France and Uzbekistan [12–20]. The paper [20] provides a brief overview of the
dynamics of the development of solar energy concentration technologies in the world
in the period from 2010 to 2021 and assesses the possibility of using these technologies
in Uzbekistan. It should be noted that the climatic conditions of Uzbekistan corre-
spond to such and other necessary criteria [21, 22].

It should be noted that the global generating potential of CSP is estimated at about
a billion terawatt-hours (TWh) per year, which is tens of thousands of times higher
than global electricity consumption [23]. It is predicted that by 2050, 12 and 25% of
the total and electric energy consumed by mankind, respectively, will be generated
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using CSE technology [24]. Currently, linear-focus concentrators, which generate up
to 80% of the energy generated using CSE technology, have found the greatest use
among CSP-based installations [25].

In recent years, fundamental and scientific and technical research, as well as
applied developments using CSP technology, have been actively carried out. Cur-
rently, there are several tens of thousands of solar installations for various purposes
and capacities based on CSP technology in the world. There are about 100 large
stations based on CSP technology in the world, and about the same number of such
stations are planned to be built. The undisputed leaders in the use of CSP, especially
for large projects, are Spain and the USA. In Australia, in the countries of North
Africa, in Chile, Algeria, Morocco, Egypt, CSP technologies are also widely used.
Recently, China, France, Germany, India, Israel, Italy and South Korea have been
increasingly working in this direction. By the end of 2019, the shares of installed
capacities of stations based on CSE by countries of the world were: Spain (37%), USA
(28%), China (10), Morocco (8), South Africa (8), Israel (6) and the rest of the
countries 3% [26].

1.3 Reasoning of the research directions

An analysis of the trends in the development of alternative energy sources shows
that many countries are already paying special attention to these energy sources. The
reasons for this, as already noted, are obvious - the lack of energy due to the growth of
its consumption, the depletion of fossil energy sources, and serious global environ-
mental problems. The way out of this situation is the uses of energy-saving and
environmentally friendly energy production technologies, that is, Renewable Energy
Sources (RES).

Here the most important thing is a reasonable understanding of this energy transi-
tion in each country and the importance of this step, the country’s contribution to
solving global energy problems in preventing global climate change on our planet.

It should be noted that alternative energy sources are widely classified according to
the types of their origin - solar energy, wind energy, geothermal energy, hydropower,
ocean energy, bioenergy and others. At the same time, if we consider, for example, the
total generation of electricity in the world, the share of RES is 27.3% (end of 2019,
[4]). And here, 15.9% hydro, 5.9% wind, 2.8% solar panels, 2.2 biofuels and the rest
0.4% are geothermal, CSP and ocean energy.

This paper discusses the use of concentrated solar energy in the study of some high-
temperature processes in the context of the use and presentation of solar technologies.

The main purpose of this work is to present the technological capabilities of the
BSF in Parkent in the study of the above problems, as well as a description of the
accompanying series of technological equipment. Before directly presenting the main
material, we briefly presented the state and prospects of the uses of renewable energy
sources in Uzbekistan and a brief overview of the technology of concentrated solar
power (CSP). It would seem that the questions are far from the main topic.

However, if you look closely, these areas are interconnected, these materials com-
plement each other, allow a more comprehensive understanding of the specific task
under consideration and see its perspective. It should be noted that during the con-
struction of the BSF (80s), the state and prospects of CSP technologies were analyzed
and also, of course, local solar energy resources were studied, etc.

The reason for the analysis is the efficiency of the BSF, that is the results of high-
temperature studies, along with other achievements, ultimately depend on the level of

87

Use of Concentrated Solar Power Technology for a High Temperature Processes: Case Study…
DOI: http://dx.doi.org/10.5772/intechopen.1002522



direct solar radiation, its daily and annual duration, and so on. For this reason, a
modern meteorological station was built at the BSF location.

Thus, the studies presented in this paper make it possible to get acquainted with
the unique technological capabilities of the BSF, the materials provide information on
some well-known high-temperature solar furnaces, promote the development of
research in the field of high-temperature processes and the development of coopera-
tion with Uzbek scientists.

2. High temperature solar furnaces

As you know, to get 1 MWh of energy, you need to burn 250 kilograms of coal at a
consumption of 0.67 tons of oxygen, with the formation of 0.9 tons of carbon dioxide,
polluting the environment. The constant increase in energy consumption, depletion of
fossil fuel reserves and environmental problems arising from its combustion pose the
task of the energy economy of the Republic of Uzbekistan to search and develop new
non-traditional energy sources, for example, renewable and environmentally friendly
solar energy. There are 260 sunny days a year in Uzbekistan and the pace of develop-
ment of solar technologies can become a determining factor in the development of
savings.

High temperatures can be obtained, in particular, in solar high-temperature instal-
lations - solar concentrators. At the same time, the most suitable solar installations are
point-focus concentrators.

The geometric shape of the reflecting surface of such concentrators is usually
formed by the rotation of conic sections - spheres, parabolas and hyperbolas. Exam-
ples of such concentrators are: spherical concentrator, paraboloid concentrator (Dish
system), parabolic trough concentrator (PTC), hyperboloid concentrator (Cassegrain
optical system) and others. At the same time, when designing such installations, in
order to facilitate the technological processes of forming reflective surfaces of instal-
lations, various simplified technical solutions are used. An example of such
approaches is the concentrators with facets, the use of Fresnel reflectors, the use of
approximately close to ideal geometric shapes, and others. As shown in [27], parabo-
loid concentrators have the highest concentrating capacity.

In the aspect of the use of solar radiation, the most technologically effective is its
concentration on the surface by means of mirror concentrating systems (MCS). To
date, there are many MCS of various sizes and the level of concentration of solar
radiation. Among high-temperature solar furnaces, first of all, it is necessary to note
the unique large poly-heliostat solar furnaces with a capacity of 1000 kW (Figure 1)
in Parkent (Uzbekistan, 1987) and in Odeillo (France, 1971) [28, 29]. It has become
generally accepted that the abbreviation BSF - Big Solar Furnace is used to identify
these furnaces. The diameters of the concentrators of these furnaces are 54 m with a
focal length of 18 m. The density distribution of concentrated solar energy in the focal
zone of these furnaces has the form of a Gaussian distribution with a diameter of
almost 1 m and a concentration of about 10,000 times. In these furnaces, in the best
condition of their optical elements, a temperature of about 3000 degrees is reached.
The maximum energy density reaches up to 750 Wt/cm2, the spot diameter is about
1 m. Such densities of the concentrated solar radiation flux make it possible to imple-
ment high-temperature physico-chemical processes leading to the synthesis of new
materials with a special microstructure, the production of hydrogen by thermochem-
ical method, the generation of electrical and thermal energy, laser radiation and etc. In
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addition, it should be noted that the high accuracy of the optical elements of the BSF
allows it to be used as a multifunctional ground-based Cherenkov telescope for
recording Cherenkov flashes from broad atmospheric showers of cosmic rays with an
energy of E0 ¼ 1013 � 1015 eV.

Thus, it can be stated that BSF, in addition to being an environmentally friendly
melting furnace, is also a unique research tool for conducting high-temperature stud-
ies and has a number of important significant advantages compared to other high-
temperature solar furnaces, and they are as follows:

1.High furnace capacity, ≈ up to 1 MW.

2.High levels of the coefficient of concentration of solar radiation, 4500÷10,000.

3.Large size of the focal spot of the furnace, ≈ 80÷100 cm.

4.The presence of 62 heliostats, which allows manipulating the focal distribution of
energy.

5.The presence of automatic control system of heliostats (ACS), which allows you
to flexibly control the movements of heliostats.

Figure 1.
General view of BSF in Parkent and Odeillo.
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6.Simulation of 62 narrow-aperture concentrators.

7.The ability to control the concentrated solar energy flux in technological
processes.

8.The ability to measure and control the optical-energy characteristics of the
furnace, etc.

The Institute of Materials Science has developed and created various small solar
furnaces (SSF) with an average capacity of 1500 Wt and a couple of them have been
exported to Egypt (Tabbin Institute of Metallurgy, TIMS, Cairo) and India (Interna-
tional Powder Metallurgy Center, ARCI, Hyderabad). The exported furnaces are
identical to each other and have a thermal power of 1500 watts. The installation
consists of a single flat heliostat with size of 2.8 � 2.8 m, a single paraboloid concen-
trator with a diameter of 2 m, a solar sensor and auxiliary measuring instruments and
the necessary equipment for its operation. The heliostat of the installation has an
automated system for tracking of the Sun. These furnaces are shown in the Figure 2.

Currently, fundamental and applied research in the field of solar materials science
using high-temperature solar furnaces is carried out in many leading scientific centers
of the world. They are, for example, NREL (USA), Sandia National Laboratory, USA,
PROMES (France), Plataforma Solar de Almernia (PSA, Spain) ETH Zurich (Switzer-
land), Paul Scherrer Institute (Switzerland), DLR (Germany), The Weizmann Insti-
tute of Science (Israel), HRFSF (Mexico), Masdar Institute Solar Platform (Abu
Dhabi, UAE), Institute of Materials Science (Uzbekistan) and many others. It should
be noted that [30] presents a fairly detailed analysis of the characteristics of various
solar furnaces used for the production of “green” hydrogen, in particular, the possi-
bilities of the Parkent solar furnace are also noted there. In the well-known work [31],
a number of important studies in the field of high-temperature processes performed
using solar furnaces are presented in sufficient detail - solar surface hardening of steel,
refinement of nanomaterials, solar synthesis of fullerenes and carbon nanotubes.

3. Measurement of highly concentrated solar flux

It should be noted that any complex technological installation without a system for
monitoring and measuring the relevant parameters and its performance characteris-
tics cannot be operated efficiently and reliably. In this regard, a Big Solar Furnace is
equipped with modern devices for measuring the density of concentrated solar

Figure 2.
Installed solar furnaces in Egypt and the Republic of India.
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energy, the temperature of the materials under study and devices for monitoring the
flow of high-temperature processes. These include a high-temperature pyrometer for
remote measurement of the temperature of materials (IMPAC IGA 12, Tmax = 3500°
C), a thermal imager (FLIR A655), various radiometers, photometers, digital ther-
mometers, a vision system (developed by the Institute of Materials Science), etc.

Thus, one of the important problems in the operation of high-temperature solar
installations is the measurement of the flux density in the focal zone of the concen-
trator. For this purpose, calorimetric, radiometric and photometric methods are
widely used, as well as television measuring systems.

The most common method of measuring the energy flux density in the focal plane
of the Mirror Concentrating System (MCS) is the calorimetric method, based on
measuring the amount of heat transferred by the surface of the calorimeter to the
coolant. The calorimetric method consists in measuring the amount of energy trans-
ferred from the MCS into the beam-receiving cavity at different diameters of the inlet
holes (Figure 3).

Special diaphragms are installed tightly to the inlet of the radiating cavity so that the
center of the orifice of the diaphragms coincides with the center of the orifice of the
radiating cavity. The main advantage of the calorimetric method is to obtain an absolute
value of the energy distribution, as well as the ability to measure radiant fluxes in a wide
range of energy densities up to 1000Wt/cm2, with a relative error of 10–15%.

The radiometric measurement method, like the calorimetric one, is based on the
thermal effect of radiant energy, however, the flow density in this case is judged
directly by measuring the thermo-EMF or thermal resistance of the receiving surface.
Modern designs of radiometers with cooling of the measuring part make it possible to
measure consistently high levels of flux density up to 1.5*107 Wt/m2. However, radi-
ometers measure only relative values of the flux density.

One of the modern and informative methods of measuring the values of the flux
density is the so-called system of technical view-STV. In this method, the irradiance is
determined based on the image of the focal spot. The obtained relative values are then
converted to absolute values using calibration coefficients. STV allows you to instantly
get all the information about the focal spot. The obtained data is easily processed using
graphic editors on personal computers.

Figure 3.
Design of the flow calorimeter. 1-thin-walled copper tubes; 2-sheet copper; 3-thermal insulation; 4-diaphragm; 5-
inlet.
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Pyrometers operating on the basis of the laws of thermal radiation of heated
bodies are widely used to measure high temperatures. It is known that the flow of radiant
energy (Q) falling on the surface of the body is partially reflected (R), partially passes
(D), and the rest is absorbed (A), and Q = R + D + A. The absorbed energy is converted
into the energy of the thermal motion of the molecules. The material absorbing the rays
heats up and emits radiant energy in the form of electromagnetic waves of various
lengths, the intensity of which increases with increasing temperature.

To measure the flow density and temperature of materials, a FLIR thermal imager
with sensitive microbolometers elements is used, which register the radiation of the
melt at a wavelength of 8 microns. The functionality of the FLIR thermal imager
allows you to study the processes of heating, melting of materials in the focal area of
the BSF. Most likely, the processes of heating, melting of the material in the concen-
trated solar irradiation (CSI) flow are accompanied by the processes of radiation,
convection, as well as losses due to thermal conductivity, depending on the phase
state, the granularity of the material in the initial state. Such features should be taken
into account when modeling the process of interaction of concentrated solar radiation
with materials.

4. Equipment and stands for melting, synthesis, heat treatment and
complex testing of materials and various technical products

BSF is a complex optical-mechanical, electrical system and its successful operation
requires appropriate instrumentation, instruments and specific equipment for high-
temperature processes. These include, for example, meters -radiometers, calorime-
ters, digitization systems (system of technical view-STV), photometers, actinometers,
computer interface systems, pyrometers, thermal sights etc., modern theodolites,
levelers, narrow-aperture lasers, spotting tubes and others.

In the focal zone of the BSF various melting units are installed - furnaces of
“bucket” and “rotary” types, for example. Figure 4 shows the scheme of a water -
cooled furnace of the plate type – this is a typical scheme of melting furnaces.

Figure 4.
Water-cooled plate type furnace: (1) metal body, (2) material being smelted, (3) material feed, (4) melt zone,
(5) melt stream, (6) water jet, (7) barrier, (8) cold water reservoir.
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The ladle furnace is designed for experimental melting in small portions with
constant stirring during the melting process in order to achieve homogeneity of the
fused material. The furnace allows you to cook the charge, lighten the glass mass and
then carry out a one-time production of the entire portion of the melt. The control of
the furnace by means of swings makes it possible to mix the liquid phase during the
melting process to achieve better clarification and homogenization. The highest melt-
ing performance is achieved when the zone with the maximum concentration of light
energy is located on the vertical surface of the melted materials. Therefore, for high-
performance melting, it is necessary that the irradiated surface of the material forms a
right angle with the optical axis of the furnace. However, in the case of powder
materials, this is not possible. Therefore, blocks of a certain size are pressed from
powder material. A “rotary” type furnace is convenient for melting compressed
blocks.

In a “rotary” type furnace (Figure 5), the charge is cooked on the surface and
during the melting process, the glass mass is clarified in the hot zone of the focal area.
Frit is obtained from clarified glass for further ceramic processing. The “rotary” type
furnace is quite simple and convenient for operation, and is currently the main BSF
equipment for melting high-temperature materials. The ladle furnace is designed for
experimental melting in small portions with constant stirring during the melting
process in order to achieve homogeneity of the fused material and to avoid delamina-
tion of the melting products.

This type allows you to overheat the liquid state and unload the melted mass once.
There is a swing system that allows you to form a continuous flow of melt and adjust
its speed. The materials of the procedure are melted in a ladle furnace mounted on a
coordinate trolley, which manifests itself in the degree of freedom (Figure 6).

The upper inner part of the furnace is used as a reflector of energy coming from
the lower part of the concentrator. Such a device provides additional heating to the

Figure 5.
General view of rotary smelting furnace, located at focus of the BSF.
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molten material and is maintained in a horizontal position. When the material is
pumped in the liquid phase, it moves from one part of the furnace to the opposite
through the focal spot. The oven allows you to cook the charge, lighten the glass mass.
The control of the furnace by means of swings makes it possible to move the liquid
phase during the melting process and achieve better clarification and homogenization.
Passing through the focal spot, the material is constantly heated and mixed, thus
achieving homogeneity of the fused material. Passing through the focal spot, the
material is constantly heated and mixed, thus achieving homogeneity of the fused
material.

Along with the advantages of high purity and homogeneity, preservation of
stoichiometry, implementation of highly gradient conditions, the possibility of
overheating the melt in the air and its subsequent cooling in a controlled mode seems
promising. Such conditions make it possible to stabilize new phases, vary the phase
composition, morphology of the target material, and as a consequence, its properties.

When the surface of the melted material is inserted as much as possible perpen-
dicular to the flow of concentrated solar radiation, a high melting performance is
observed. Consequently, the surface of the material irradiated by the concentrator
must have the shape of a vertical wall and form a right angle with the optical axis of
the solar furnace. In practice, it is not always possible to obtain a vertical wall due to
the powder state of the material. To obtain a vertical wall, the powdered material is
pressed into plates. Such materials are easy to melt in water-cooled “rotary” type
melting furnaces. To ensure these conditions, a water-cooled “rotary” type furnace
has been created.

In a “rotary” type furnace, the charge is cooked on the surface and in the process of
draining in the hot zone of the focal spot, the glass mass is clarified. Frit is obtained

Figure 6.
A melting furnace of the “bucket” type.
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from clarified glass for further ceramic processing. The “rotary” type furnace is quite
simple and convenient to operate, currently it is the main BSF equipment for melting
high-temperature materials. When synthesizing glasses, special attention should be
paid, firstly, to the degree of overheating of the melt, and secondly, to its cooling rate.
It is advisable to use ultrafast quenching methods that allow increasing the melt
cooling rate to 104 degrees/s.

The introduction of concentrated solar radiation from the concentrator to the
target can also be varied with the help of special shutters and a screen made of metallic
aluminum and cooled with water. In this case, it is possible to sequentially and/or
simultaneously inject a concentrated stream onto the sample. Pyrometric measure-
ments revealed that with gradual input of the flow, the heating rate was 1000 degrees/
min, and with rapid input of the flow - 700÷ 1000 degrees/sec.

5. Features of high-temperature processes

In materials science there is a fundamental triad of obtaining materials with
desired properties: “method of synthesis - morphology - properties”. It should be
noted that materials with a favorable combination of different properties can easily be
obtained by liquid state quenching. Materials obtained from the melt exhibit high
values of mechanical and dielectric properties. Of course, such materials are widely
used in various industries. As for melts, it should be noted that, unlike ordinary
liquids, crystal-like groups, microcrystallites, are present in the structure of melts. The
mutual arrangement of groups in the melt strongly affects the structure and properties
of the resulting material. On the other hand, the quality of the melt is determined by
the rate of heating of the substance to the melting temperature and above, as well as
the rate of cooling of the melt.

The use of solar technologies makes it possible to increase the heating rate hun-
dreds of times and obtain a structure from clusters of a certain composition, using the
methods of fast (103 degrees/s) and ultrafast (104 degrees/c) tempering. Thus, the
modeling of the processes of heating and cooling of materials in the flow of CSI is of
both scientific and practical interest. Heating. The complete equation of the heating
process will be written as

dTs

dt
¼ � α

cρd
Ts � T0ð Þ � εσ0

cρd
T4
s � T4

0

� �þ 1� Rð Þ
cρd

E (1)

where α is the proportionality coefficient, called the heat transfer coefficient,
W/ (m2 K); c is the specific heat capacity W/kgK; ρ is the density g/cm3; d is the
layer thickness, m; Ts is the surface temperature of the body and T0 is the
ambient temperature, K; ε is the degree of blackness, σ0 - Stefan-Boltzmann constant,
E is the density of the flux of concentrated solar radiation in units (W/m2); R is the
reflection coefficient of the heated material. The equation consists of three terms and
the first term describes convective heat transfer, the second is related to heat losses
due to thermal radiation, and the third is due to the absorption of solar radiation
energy.

We can state that the process of heating a material in a field of concentrated solar
radiation consists of three parts: heating a solid material to melting; the transition of a
solid material into a liquid - melting, heating a liquid material. The boundary temper-
ature values can be determined from the equation:

95

Use of Concentrated Solar Power Technology for a High Temperature Processes: Case Study…
DOI: http://dx.doi.org/10.5772/intechopen.1002522



dTs

dt
¼ 0, at Ts ¼ Tm (2)

Тm is melting temperature.
The incoming heat Q is balanced with the melting heat Qm, that is

Q �Qm ¼ Q � λm ¼ Q � λρSd ¼ 0 (3)

Q ¼ 1� Rð ÞE� α Tm � T0ð Þ � ∈ σ0 T4
m � T4

0

� �� �
Stm (4)

tm ¼ λρd
1� Rð ÞTs � α Tm � T0ð Þ � β T4

m � T4
0

� �� � (5)

where, λ is the specific heat of melting, J/kg; m is the mass of the material, kg; S is
the surface area absorbing solar radiation, m2. The initial conditions for the studied
materials (pyroxene rocks) were chosen as follows: c = 711 J/kgK, ρ = 3.2 g/cm3;
α = 100 J/(m2 K); d = 0.05 m; T0 = 320 K; E = 750 W/cm2; R = 0.15; Tm = 1660 K;
λ = 4200 J/kg.

The calculation was carried out in the MATLAB program. Figure 7 shows the
dependence of the temperature of a material sample on the time of exposure to a
concentrated stream of solar radiation.

Figure 8 clearly demonstrates the process of heating the material and shows the
non-monotonic nature of the temperature change over time in three sections. At the
beginning, heating of the solid material is observed until it passes into the liquid state.
The duration of the first section is 80 seconds and has a speed of 1385 deg./s.

It is known that as the temperature of the body rises, the rate of thermal motion
and the amplitude of oscillations of its atoms should increase, which are forced to
move away from each other over long distances, i.e. distant order disappears. And the
destruction of the crystal lattice begins, i.e. the solid melts.

In the second section, melting is observed, which lasts about 100 seconds. At the
end, an equilibrium state of the liquid is established. In the third section, the liquid
material is heated. As can be seen from the curve, the maximum flux of incident solar
radiation corresponds to heating saturation.

Figure 7.
The dependence of temperature on the time of exposure to a concentrated stream of solar radiation.
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5.1 Cooling

It follows from the above that the cooling rate of the melt is the determining factor
in the degree of amorphism of the quenched material. In turn, the cooling rate is
determined by the conditions of heat transfer, the temperature of the melt, the
material of the hardening system, etc.

There is such a value of the cooling rate Vc, which depends on the level of
thermophysical parameters of the material and the nature of the interaction between
particles and fluctuates over a wide range (from 102 deg./s for inorganic glasses and
melts of certain metals to 106–108 deg./s for metals). High cooling rates are typical for
small thicknesses of the cooled melt. In this work, the melts were cooled in three ways:
- collapse of the melt according to the “hammer-anvil” principle between water-
cooled rods (“clapperboard”), in which the melt is quenched at high speed; � pouring
liquid drops into water; � cooling on the water-cooled surface of the substrate.

The amount of heat released through the surface of the body S per unit of time
depends on the temperature difference between the surface of the body Ts and the
environment T0 (Ts > T0):

dQ
dt

¼ �α Ts � T0ð ÞS (6)

If we assume that the temperature distribution inside the droplet is uniform, as
well as the heat input, we obtain

ΔQ ¼ cmΔT (7)

Eq. (6) can be rewritten as:

dTs

dt
¼ � α

cm
Ts � T0ð ÞS (8)

where c and m are the specific heat and the mass of the droplet, respectively.

Figure 8.
Melt cooling curves on a solar furnace by the “firecracker” method, with heat transfer coefficients a) 1-α = 500 J/
(m2 K), 2- α = 1000 J/(m2 K). hk = 100mkm, v = 1 m/s. b) Heat transfer coefficient α = 10,000 J/(m2 K),
hk = 10mkm, v = 10 m/s.
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It should be noted that, as a result of melt compression, its contact surface changes
with time; its shape changes from spherical to lamellar. This means that S in (8) is a
function of time S = S(t).

Such a dependence can be revealed within the framework of the following bound-
ary conditions. We assume that when compressed between two rods moving against
each other with an average speed v, a spherical drop of volume V after time t gradu-
ally takes a disk-like shape (for example, due to the wetting effect) of radius R and
height h, depending on time. So the volume V is preserved, and the height of the drop
changes as h(t) = d-vt. This allows you to determine the area of the end face of the
disk S, as follows:

S tð Þ ¼ V
h tð Þ ¼

V
d� vt

(9)

where d is the diameter of the ball.
Taking into account the fact that heat is transferred simultaneously from both ends

of the disk, we can replace S with 2S, and from expressions (9) and (8) we can come to

dTs

dt
¼ α

cm
Ts � T0ð Þ v

d� vt
(10)

To solve, we will need to find the following integral

I ¼
ðt

0

dt
d� vt

¼ � 1
v
ln

d� vt
d

� �
(11)

Thus, for the general solution of Eq. (10) we obtain

Ts ¼
T0 þ Ts0 � T0ð Þe�2αV

cmv ln
d

d�vtð Þ при t≤ t0

T0 þ Ts1 � T0ð Þe� 2αVt
cmhk при t> t0

(
(12)

where

Ts1 ¼ T0 þ Ts0 � T0ð Þe�
2αV
cmv ln

d
hk

� �
(13)

Where hk is the final thickness of the disk and

t0 ¼ d� hk
v

(14)

The process of cooling by the “damper” method under the condition α = 500 J/
(m2K) (curve 1), α = 1000 J/(m2K) (curve 2) has the character of a nonmonotonic
decrease in time (Figure 8).

From Figure 9, it was revealed that when the melt is cooled by pouring it into
water, the cooling rate is about 103 K/s. While it follows from Figure 10 that the
cooling of the melt on the surface of the water-cooled substrate proceeds at a rate of
20 K/s at d = 0.1, α = 1000 J/(m2 K).
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The analysis of the curve in Figure 9 shows that the melt cooling rates in a solar
furnace by draining liquid droplets into water are about 103 K/s. Figure 10 shows the
cooling curve of the material (melt) in a solar furnace by cooling on the surface of a
water-cooled substrate at d = 0.1, α = 1000 J/(m2 K). The analysis of the curve in
Figure 11 shows that the melt cooling rate in a solar furnace by cooling on the surface
of a water-cooled furnace is about 20 K/s. Thus, by choosing the melt cooling method,
different cooling rates can be achieved: 102; 103 and 104 K/s. For pyroxene melts at
high cooling rates T > 103 K/s, the condition of homogeneous nucleation and growth
of crystalline grains is fulfilled. In this case, the grain size is determined by diffusion.

d � τU � C
ΔT3

T2
m

 !
exp � E

kTcr

� �
(15)

Figure 9.
The curve of melt cooling in a solar furnace by draining liquid droplets into water at α = 1000 W/(m2 K).

Figure 10.
The cooling curve on the surface of a water-cooled furnace at d = 0.1, α = 1000 J/ (m2 K).
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where τ is the average grain growth time corresponding to the crystallization time,
s; U is the grain growth rate of microns/s; C is a value depending on the cooling rate,
melting temperature and enthalpy, surface tension, specific volume of the solid phase
and Debye frequency of microns; Tsg is the melt crystallization temperature, K; DT is
the value supercooling (DT = Tm - Tcr), K; E is the effective activation energy of
diffusion, eV.

Figure 11 shows the dependence of the grain size of the material on the quenching
rate. It can be seen from Figure 11 that approximating this dependence to the maxi-
mum possible quenching rate makes it possible to determine the size of clusters in the
liquid state of matter. To obtain a hardened material with nanosized particles, it is
necessary to cool the melt at a rate above 106 deg./s.

The processes of heating, melting and cooling of pyroxene rocks in a stream of
concentrated high-density solar radiation are well described within the framework of
a mathematical model, taking into account the initial conditions. The results of the
calculations are in good agreement with the experimentally observed ones.

The strongest influence on the dispersion of the fused material is exerted by the
rate of cooling of the melt, which can be carried out by three methods: arbitrarily on
the surface of a water-cooled substrate; pouring into water (hardening); anvil - by the
collapse of the melt with copper rods (superhardening). Thus, to obtain a fused
material with nanosized particles, it is necessary to superharden the melt at a rate
above 106 deg./s.

Thus, during the synthesis of materials under the influence of concentrated solar
radiation, the melt can be overheated and cooled at different rates, which makes it
possible to change and fix the states of a certain phase composition and microstruc-
ture, thereby regulating the properties of the resulting material.

Thus, the processes of heating, melting and cooling of materials (pyroxene rocks)
on a large solar furnace were simulated.

The proposed mathematical model, taking into account real conditions, quite well
describes the processes of heating, melting and cooling of pyroxene rocks in a stream
of concentrated solar radiation. It turned out that the dispersion of the obtained
material depends on the rate of cooling of the melt, which is set by the method of its
implementation. For example, a nanomaterial can be obtained by cooling the melt at a
rate above 106 deg./s.

Figure 11.
Dependence of the particle size of the material on the quenching rate.
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Abstract

This chapter introduced a new series of organic compound additives like 
 thiophene 2,5-dicarboxylic acid (TDA), sulfanilamide (SAA), 2,6-diamino pyridine 
(DAP), dibenzo-18-crown-6 (DBC) and 2,6-pyridine dicarboxylic acid (PDA) with 
gelatin/KI/I2 consist gel polymer electrolytes for dye-sensitized solar cells (DSSCs) 
application. Nowadays, it is focusing on biopolymers for preparing gel electrolytes 
for DSSCs application which is a conventional renewable energy source. Biopolymers 
are abundant in nature, and they are non-toxic, thermally stable, environmentally 
friendly, low-cost, and have good mechanical and physical properties. The introduced 
novel gelatin (GLN) biopolymer-based gel electrolytes play a role in improving ionic 
conductivity and stability, and it also play a better ability for ionic mobility. The 
low-cost and commercialized organic additive molecules with electron donors like 
S, O and N elements were strongly coordinated on the surface TiO2 and fermi level 
shift into negative potentials. The organic additive compound SAA achieved a very 
active additive and easily reduced the recombination reaction between the surface of 
TiO2 and I3

− ions. This phenomenon readily improves the stability and overall η of the 
DSSC. During the DSSCs process, intrinsic charge carrier transfer between both elec-
trodes as well as the continuous regeneration of the dye molecules. The surface study 
and conductivity of prepared gelatin-based gel electrolyte with N, S and O-based 
additives were characterized by fourier transform infrared spectroscopy (FTIR), 
UV-visible, X ray diifraction (XRD), Electrochemical Impedance Spectroscopy (EIS) 
and dye-sensitized solar cells (DSC), respectively. Furthermore, to examine the 
adsorption behaviour of organic additives on TiO2 (101) surface and negative fermi 
level shift on TiO2 surface were analysed by density functional theory (DFT) theo-
retical study.

Keywords: DBA, TDA, DSSCs, TiO2, biopolymers
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1. Introduction

DSSC has a conventional renewable energy source and ecologically interest 
owing to their simple design, easy fabrication, low production cost and high power 
conversion effiency (PCE) [1, 2]. O’Regan and Grätzel were the first to achieve PCE 
of 7.1% for DSSCs devices in 1991. Currently, DSSCs achieved a PCE 15.1% efficiency 
increase by using two metal-free organic dyes [3, 4]. In DSSCs device, there are three 
major constituents as listed below: (1) FTO plate coated using TiO2 nanocrystal, it 
will act as a photo anode as well as grip for dye molecules (sensitizers), (2) redox 
couple I−/I3

− act as a charge transfer which contains electrolyte act as an oxidized dye 
molecule it regenerates continuously and (3) FTO plate act as a counter electrode 
which is regenerate the electrolyte using platinum coated. Photosensitizers yielding 
superior photocurrents are crucial for copper-electrolyte-based, highly efficient 
dye-sensitized solar cells (DSCs). One of the essential constituents in the DSSCs is 
the electrolyte, which has five main constitutes: (i) glass conductive substrate, (ii) 
sensitizing dye, (iii) an electrolyte containing a redox couple, (iv) a semiconductor, 
and (v) a platinized counter electrode. DSSCs have a combination of the combina-
tion which affects the performance dramatically [5, 6]. DSSCs failed to propose the 
liquid electrolytes there are numerous reports based on polymer electrolytes. During 
the DSSCs process, intrinsic charge carrier transfer between both electrodes as well 
as the continuous regeneration of the dye molecules. One of the important factors 
that affect the photovoltaic performance of DSSCs is a solvent type and immersion 
time for the photoanode. To prepare the solvent chosen for the photo anode affects 
the adsorption of the dye on the surface of a semiconductor. This liquid electrolyte 
has some disadvantages, like liquid volatilization, leakage and sealing complications, 
and voltage fluctuation which have a significant impact on the long-term stability, 
maintenance and performance of the DSSCs [7–10]. The polymeric chain diffusion of 
ions by intermolecular interaction would alter the ionic conductivity of the polymer. 
The blending technique helps to reduce the enhancement of the dielectric constant, 
the energy barrier of charge carrier ions, subdues melting point, boiling point and 
viscosity. The advantages of blended gel polymer electrolytes such as better charge 
carrier mobility, tensile strength, high thermal and chemical stability, flexibility, good 
fluidity, less spillage, excellent dielectric constant, increasing ionic conductivity and 
ion transfer rate. The gel-based polymer electrolytes enhanced the long-term stability 
in DSSCs [11, 12]. Several researchers have prepared gel electrolytes have been used. 
Polymers such as poly (acrylonitrile), poly (vinyl chloride), poly (acrylonitrile), poly 
(propylene oxide), poly (ethylene oxide), poly (vinylidene fluoride hexafluoropro-
pylene), poly (vinylidene fluoride), poly (methyl methacrylate), etc., used in DSSCs 
applications [13–18]. Biopolymers are abundant in nature, and they are non-toxic, 
thermally stable, environmentally friendly, low-cost and include good mechanical and 
physical properties [19].

Researchers are currently focusing on biopolymers for prepared gel electrolytes 
to DSSCs application, such as chitosan, cellulose, alginate, lignin, gelatin, agarose, 
hydroxypropyl cellulose, starch, carrageenan, natrosol, cyanoethylated cellulose, and 
polymers [20–23]. Chitosan, heparin, soluble starch, cellulose, gelatin, PCA, PVP 
and so on can be used to synthesizing different nanoparticles that can replace various 
toxic reagents. Gelatin is a biopolymer, and it has been commonly used in many more 
applications like electrochemical devices, biomedical applications, packing applica-
tions, water packing, food industries and tissue engineering [24–27]. Currently, 
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researchers are introducing innovative inorganic metal oxide and organic compound 
for additives into the gel or liquid electrolytes to improve the PCE and stability of 
DSSCs. While in the DSSC framework, is considered as the major component, a 
number of metal oxide geometries are being initiated such as copper oxide (CuO), 
nickel oxide (NiO), titanium dioxide (TiO2), zinc oxide (ZnO). The starting material 
for mixed metal oxide (MMOs) using layered double hydroxides (LDHs) has dem-
onstrated superior performance for DSSC application due to their relatively low-cost 
and forthright preparation process [28–33]. The electrolyte added in the additive 
consumes a significant effect on the DSSCS of the photovoltaic performance by the 
transfer of the photoinjected electron at TiO2 surface to the redox couple electrolyte 
and reducing the back electron [34]. The oxygen, nitrogen and sulphur-containing 
(O, N and S) heterocyclic compounds like N-methyl benzimidazole (NMBI), 4-tert-
butyl pyridine (TBP), N-alkyl benzimidazole (NABI), benzothiazole thiophene, 
propyl iso nicotinate, isopropyl isonicotinate, etc., were mostly used for DSSCs. The 
addition of triphenylamine, carbazole and triphenylamine to the bridged system 
improves light-harvesting properties and reduces the band gap. The produced dyes 
exhibit the electrochemical, desired optical and photovoltaic capabilities in addition 
to being thermally stable [35–38]. The unoccupied gaps between the connected com-
pounds at TiO2 surfaces enable the electrolyte solution to enter the dye component 
and trigger recombination before reaching the TiO2 interface due to their large size, 
so they tend to leave. It will affect the photovoltaic performance during DSSCs system 
operation. The added additive plays well to reduce the electron recombination process 
between the photoanode (TiO2) and electrolytes and improves the Jsc, Voc and PCE of 
the DSSCs. The electron-rich donor like N and S-based additives are well adsorbed on 
the TiO2 surface and thus CB (conduction band) edges rapidly shift into the negative 
potential to improve the electron lifetime (τn) in the DSSCs device [39, 40]. Gelatin, 
iodine and potassium iodide were mixed up in DMF solvent and kept in magnetic 
stirrer for few hours to get the gel mixture. The same procedure was followed for 
all other organic additives. Good stability and high performance of DSSCs device 
due to incorporation of inexpensive organic additives with rich lone pair O, N and S 
groups into gel electrolytes which compared to with and without organic additive gel 
electrolyte.

2. Experimental section

2.1 Preparation of GLN gel electrolytes

Firstly, gelatin 0.30 g was dissolved in glycerol solvent. Then iodine 0.010 g and 
potassium iodide 0.030 g were mixed in DMF solvent and the mixture was kept in 
magnetic stirring. The whole mixture electrolyte was stirred continuously at 3 hours 
for 70°C. After 3 hours stirred, we get gel mixture (dark brown colour).

The glycerol solvent was extra added until to the gelatin polymer 0.30 g dissolved 
and then additionally added iodine 0.010 g, potassium iodide 0.030 g, SAA 0.010 g 
in DMF solvent. Afterwards, the whole combination was magnetic stirred well at 
3 hours for 70°C to get gel formation. The same procedure was followed for all another 
organic additive like PDA, TDA, DBC and DAP other gel electrolytes. The selected 
commercial organic additives structure and photographs of the six gel electrolytes 
given in Figures 1 and 2.



Advances in Solar Photovoltaic Energy Systems

108

3. Results and discussion

The XRD result of the gel electrolytes was shown in Figure 3. Previous literature, 
the gelatin polymer exhibited broadening peak at 2θ range, 22.35° [41]. From the 
XRD pattern showed broad peaks around 22° was observed for the entire gel poly-
mer by the amorphous nature of the gel electrolytes which further proved the high 

Figure 1. 
Chemical name and structure of selected organic additives.

Figure 2. 
Images of gel electrolytes without and with additives.
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conducting electrolyte behaviour. Further it confirms that the organic additives, 
co-ordinates well with the gelatin polymers matrix and redox couple of gel polymer 
sample resourcefully. The amorphous phase of such gelatin gel polymer samples is 
notable parameter in expressing the conductivity nature. Hence, it shows that the 
conductivity increased with the amorphous nature.

The gelatin gel electrolytes with/without organic additives added upon were mea-
sured by FTIR with 400 to 4000 cm−1 range. The corresponding FTIR spectroscopy 
specified in Figure 4. From the FTIR, clearly exposes the vibration and stretching 
frequency of all the gelatin gel electrolyte with/without additives. The broad peak 
was observed at 3500–3200 cm−1 assigned for biopolymer gelatin hydroxyl group. 
Due to C = O vibrational, stretching frequency intensity peak was attained highly at 
1640 cm−1. N-H bending allocated at 1530 cm−1 is sharp peak. Small intensity peak 

Figure 3. 
XRD pattern of gel electrolytes without and with additives.

Figure 4. 
FTIR spectroscopy of gel electrolytes without and with additives.
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was attributed at 1445–1340 cm−1 owing to the bending vibration of aliphatic C-H 
group and noted C-N stretching frequency showed at 1235 cm−1 [42]. FTIR clearly 
shows that the inclusion of organic additives in gelatin gel electrolyte with composi-
tion of KI/I2 changes a small intensity shift, which shows organic additives and redox 
pair well connection with gelatin polymer.

The gelatin gel electrolyte absorbance range was investigated by UV-visible 
spectroscopy. Figure 5 describes the GLN gel electrolyte without additive absorbance 
range was shown at 313 nm. The gelatin gel electrolytes with organic additives SAA, 
TDA, PDA, DAP and DBC correspond to 293, 290, 296, 292 and 295 nm, respectively. 
This small changes in UV-visible absorption may be due to the dissimilar functional 
groups present in the organic additives interacting with gelatin gel electrolytes. Also, 
the UV-visible study confirmed the addition of organic additives well incorporated 
with the I3

− ion in the gelatin polymer electrolyte. It exhibited a peak at 320-370 nm 
for all the organic additive-based gel electrolytes. This phenomenon increases the 
I3

− ion mobility in the gelatin polymer electrolyte and enhanced well the DSSCs 
performances.

The morphology structure studied about with and without organic additive in 
the gelatin gel electrolytes. Without organic additive GLN gel electrolyte given in 
Figure 6a, which showed the surface morphology like fibre nature and without space 
formation. Gelatin gel electrolyte with organic additives SAA (Figure 6b), TDA 
(Figure 6c), PDA (Figure 6d), DAP (Figure 6e) and DBC (Figure 6f) displayed 
surface morphology like fibre and with space formation which confirms the addition 
of additives changed the surface of the gelatin gel electrolyte. From the scanning elec-
tron microscopy (SEM), it clearly observed that gelatin and additive gel electrolytes 
increase the amorphous nature and improve the ionic conductivity in DSSCs.

DSC study for gelatin gel electrolytes with and without additives was caried under 
an annealing temperature of 50 to 300°C with nitrogen atmosphere at 10 k/min. The 
Figure 7 displayed decomposition peak for without and with organic additive gel 
electrolyte. GLN peak revealed at 230°C, which is without additive gel electrolyte. 

Figure 5. 
UV-visible spectroscopy of gelatin gel electrolytes without and with additives.
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Figure 6. 
SEM images of gelatin gel electrolytes (a) GLN, (b) SAA, (c) TDA, (d) PDA, (e) DAP and (f) DBC.

Figure 7. 
DSC curves of gelatin gel electrolytes without and with additives.
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The organic additives-based gel electrolyte exhibited decomposition peak at 231°C 
(SAA), 233°C (TDA), 208°C (PDA), 234°C (DAP) and 241°C (DBC), respectively. The 
variation of the decomposition may be due to the different organic additives and KI/
I2 incorporated into the gelatin gel electrolytes. The broadening decomposition peak 
confirms the nature of the amorphous gel electrolytes owing to interfacial interaction 
between the organic additives and polymer. These thermal results prove the gelatin 
gel electrolytes have a good stability in DSSC performances.

All the organic additives were optimized at a gas phase by Gussian16, and opti-
mized geometries of organic additives compound are shown in Figure 8. Highest occu-
pied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) orbital 
calculated for the organic additives done by frontier molecular orbital (FMO) analysis 
optimization at gas phase. Figure 9 shows the HOMO-LUMO for organic additive 
compounds. Figure 9 observes the electronic shift and charge transfer in different 
orbitals. The transition occurs primarily from the aromatic cloud towards the func-
tional group present in it, which has been noted. The additives containing carboxylic 
acid and amino functional groups have been mostly noticed. In DBC additive, it has 
the least efficiency due to the absence of these functional groups, and the orbitals are 
only localized at the π ring due to no transition between HOMO and LUMO. Table 1 
shows the Energy Gap (Eg) for all the organic additives between HOMO and LUMO.

Eg from the table shown that HOMO-LUMO gap is a high for DBC additive. The 
FMOs are mainly referred to as the lowest unoccupied molecular orbital (LUMO) 
highest occupied molecular orbital (HOMO). The photosensitizer for FMOs should be 
aligned appropriately with the other main two components in the DSSC, i.e., the elec-
trolyte shuttle and semiconductor. The conduction band (CB) of the semiconductors 
is less stable (destabilized) with respect to LUMO. The order of Eg for all the organic 
additives as follows DBC > SAA > DAP > PDA > TDA. In the DSSCs process, the entire 
organic additive HOMO-LUMO gap has a great impact on the transferred electron 
[28]. The charge transfer process will be more difficult, if the molecule has a higher 
Eg. In this case, the molecule with the greatest Eg (i.e., DBC), when compared to oth-
ers has the least efficiency. As a result, it is evident that the Eg plays a very important 
role in the PCE of DSSCs in the additive molecule.

Figure 8. 
Optimized geometries of additive compounds at PBE/6–311++G**.
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The gas phase optimization for additives optimized on the TiO2 (101) surface. All 
of these total phase DFT calculations was performed using the CP2K code. During 
the optimization, the upper two layers were free and lowest two layers was kept fixed 
surface. After the optimization, the interaction distances, fermi energies, Eads of the 
additives were calculated and the values given in Table 1. The interaction distance 
between the organic additives and anatase TiO2 surface have strong non-covalent 
bonds and covalent bond (i.e., H-bond and vdWs) interactions. The calculated 

Figure 9. 
HOMO and LUMO orbitals calculated for different organic additives in gas phase.

Sample 
code

Eg in gas 
phase (eV)

Shortest interaction distances 
(Additive·TiO2 Surface)

Eads (kcal/
mol)

Fermi 
energy (eV)

Covalent bond (Å) Non-covalent (Å)

SAA 3.82 2.08 (Ti-O)
2.27 (Ti-N)

1.67 (N-H···O)c −105.88 −3.82

TDA 3.31 1.85 – 1.93 (Ti-O)a 1.65 
–1.95(O-H+···O)c

−368.53 −3.88

PDA 3.32 1.89 – 2.24 (Ti-O)b 1.70 (O-H+···O)c −202.35 −3.89

DAP 3.63 2.05 – 2.26 (Ti-N) 1.55 – 1.76 
(N-H···O)c

−225.62 −3.60

DBC 4.07 — 2.15 – 2.98 
(vdWs)d

−69.74 −3.16

(a), (b) represents the single and double proton transfer from carboxylate group of additives into TiO2 surface, 
respectively. (c), (d) represents the van der Waals interaction distances and hydrogen bonding, respectively.

Table 1. 
The interaction distance, Eads and Fermi energy, Eg in gas phase of all TiO2 surface on organic additives.
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fermi energy and interaction distance are displayed in Table 1. Closer analysis of the 
distance reveals more efficient combinations of strong Ti-O and Ti-N bonds with 
H-bonded (~ 1.8 to 2.3 Å) interaction on the surface. The strong interaction between 
the additives and TiO2 surface is important and significant in the efficiency of the 
complexes. The shortest H-bond distance and strong covalent bond (1.65 and 1.67 Å) 
of additive SAA and TDA compounds showed the highest PCE of 5.8 and 5.2%. Due to 
the formation of covalent bond interaction in PDA and TDA carboxylates encourage 
the proton transferred into the TiO2 surface. This DAP additive may be stabilized by 
two H-bonds (N-H·····O) and Ti-N bonds between the DAP and TiO2. It is also exhib-
ited an efficiency of 4.3%, which is lower efficiency than the other (SAA, PDA and 
TDA) additives remarkable in this study.

Previous literature exposes that nature of the geometries and interaction act as 
vital role in PCE of the DSSCs device [43, 44]. Different functional groups present in 
all five organic additives strongly interact with covalent and non-covalent (H-bond 
and vdWs) on TiO2 surface and it was clearly revealed the Figure 9. The carboxylic 
acid and amino functional group performance has a major significance in stimulating 
the electrostatic interaction between the organic additives and surface TiO2. These 
dealings have a gigantic effect on the charge transfer and PCE of DSSCs. The strong 
interaction can be computed from Eads values. The organic additives Eads values −105.9 
(SAA), −368.5 (TDA), −225.6 kcal/mol (DAP) and − 202.4 (PDA), respectively. Due 
to the anchoring bond strongly present in between the functional groups in additive 
and TiO2 surface, it is exciting to note that the carboxylic functional group present 
in the TDA and PDA denote the proton from organic additive to TiO2 surface. There 
is a strong H-bond formation between the carboxylate anion and TiO2 (OH) which 
indicates the ionic state. Thus, these organic additives are powerfully bound to boost 
the charge transfer and TiO2 surface, which directly impacts the PCE of DSSCs. The 
less DBC Eads (−69.7 kcal/mol) which attributed to weak vdWs interaction in the 
absence of anchoring groups with TiO2 surface. DBC additive has a no robust elec-
trostatic interaction like other organic additives, which is obviously from distances 
and interaction sites (Figure 9) when compared to other organic additives this is due 
to the least efficiency of DBC additive. Furthermore, the energy of fermi is not that 
much affected by different additive molecules. The low fermi energy (≈ 3.5 eV) of the 
complexes helps in the easy transfer of the charge in DSSCs. After the DFT studies, it 
was clearly understood that the strong interaction between the organic additive func-
tional groups and surface TiO2 has important role to act in charge transfer process and 
hence in improved PCE of DSSCs.

The entire gel electrolyte without and with additives was studied via EIS 
(Electrochemical Impedance Spectroscopy) under room temperature by the ionic 
conductivity of. All the measured gel electrolytes scan range from 300 KHz to 
400 MHz (0.800 V) as single sign mode and to set Ewe to E. The ionic conductivity 
of gel electrolytes were calculated from Nyquist plot. The conductivity of gel electro-
lytes in the order as follows SAA (2.93 ×  10−5) > TDA (2.85 ×  10−5) > PDA (2.77 ×  
10−5) > DAP (2.67 ×  10−5) > DBC (2.38 ×  10−5) > GLN (1.72 ×  10−5) and which is 
shown in Figure 10. The conductivity results exposed that inexpensive O, S and N 
improves the ionic mobility for DSSCs, which contain organic additives in gel electro-
lytes. In these additives, gel-based SAA electrolytes proved better conductivity than 
other additives-gel-based electrolytes owing to high electron-donating properties. It 
consists of S, O and N atoms composed in a structure of the SAA additives. The inter-
action between the organic additives and TiO2 surface was confirmed by DFT studies. 
The organic-based additives gel electrolytes have a moral diffusion of ions molecules 
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owing to the crystalline of gelatin polymer decreases and organic compounds forma-
tion of complex of with I3

− ions prevents the process of recombination. Therefore, 
by the presence of carboxylic acid and amino linkage groups, highly enhanced ionic 
conductivity offers a high interaction between the TiO2 surface and organic additives 
when compared with GLN gel electrolyte (without additive). The gel electrolyte 
variation of conductivity is shown in Figure 11.

EIS study was examined for photo electrochemical process such as resistance and 
conductance during DSSCs process. This study mainly discussed about the interfacial 
charge transfer in DSSCs like charge transfer between the photo anode/electrolyte and 
platinum/electrolyte reactivity termed as Cμ, Rct and Rpt [45]. The EIS data received 
for devices under darkness was fitted by Zfit software. Rs (R1), Rpt (R2), Rct (R3) 
and Cμ (C3) values collected from fitting equivalent circuit and the values tabulated 
in Table 2. The Rs, Rpt, Rct and Cμ corresponds to series resistance, charge transfer 
between electrolytes and photoelectrodes interface and chemical capacitance of the 
DSSCs device. Figures 12 and 13 display chemical capacitance and charge transfer 
for gel electrolytes. The SAA additive gel electrolyte shows low Rpt value of 685 Ω, 
high Rct of 1674 Ω and Cμ of 5.702 ×  10−6 F. From these values compared with other 
additive-based gel electrolytes due to high because more electron-providing proper-
ties of SAA additive.

The without additive GLN gel electrolyte displayed high Rpt value of 3623 Ω, low 
Rct of 411 Ω and Cμ of 4.294 ×  10−6 F.

The chemical capacitance and charge transfer resistance results revealed that 
organic additives are an important key function of complex formation with I3

− 
ions. Furthermore, in the fermi level of TiO2, it act on the TiO2 surface caused an 

Figure 10. 
DFT optimized geometries of organic additives on TiO2 (101) surface with shortest interacting distances (Å).
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immediate change, thereby the charge for the recombination processes get reduced. 
The augmented chemical capacitance after the addition of additive SAA combined 
with gel gelatin electrolyte, when the recombination process get decreased for 
production of good PCE.

Electron life time derived from bode phase plot which was experimental result of 
EIS measurement and bode phase graph given in Figure 14. The recombination kinet-
ics between the photoanode and electrolytes interfaces are relevant to the maximum 
peak frequency (fmax) value from the bode phase plot of gel electrolytes. Electrolytes 
and electrodes interfaces electron lifetime was calculated by following derivation [46].

 τ
π

=
max

1
2n f

 (1)

Figure 11. 
Nyquist plot of gel electrolytes without and with additives.

Electrolyte system R1
Rs (Ω)

R2
Rpt (Ω)

R3
Rct (Ω)

C3
Cμ (F)

σ
(S/cm−1)

τn

(ms)

SAA/I−/I3
−/gelatin 685 685 1674 5.702×10−6 2.93×10−5 6.6

TDA/I−/I3
−/gelatin 705 684 1024 4.926×10−6 2.85×10−5 4.5

PDA/I−/I3
−/gelatin 727 727 689 4.861×10−6 2.77×10−5 4.0

DAP/I−/I3
−/gelatin 749 762 462 4.842×10−6 2.67×10−5 3.1

DBC/I−/I3
−/gelatin 840 1478 446 4.780×10−6 2.38×10−5 3.0

I−/I3
−/gelatin(GLN) 1172 3623 411 4.294×10−6 1.72×10−5 2.6

Table 2. 
Electron life time and ionic conductivity values of gel electrolytes without and with additives.
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The τn values of gel electrolytes given in Table 2. The τn of gel electrolytes varia-
tion of each other owing to presence of various functional groups present in organic 
additives. The SAA additive incorporated with gel electrolyte showed a high τn 
(6.6 ms) which compared with other organic additives-based gel electrolyte. The 
without additive GLN gel electrolyte exhibited low τn of 2.6 ms. From the τn results, 
increment of τn of SAA gel electrolyte showed reduced recombination process among 

Figure 12. 
Conductivity variation of gel electrolytes with and without additives.

Figure 13. 
Chemical capacitance of gel electrolytes without and with additives.



Advances in Solar Photovoltaic Energy Systems

118

TiO2 surface and I3
− ions. By modifying the components, we were able to find out with 

and without the addition of gel electrolyte using DSSCs device, and used for their 
optical, electrochemical and photovoltaic characteristics [47–49].

I-V measured for gel electrolytes without and with additives was carried by 1.5 
Am with sun illumination of 100 mWcm−2 and I-V curves are given in Figure 14. 
The photovoltaic results of Voc, FF, Jsc and η presented in Table 3. The SAA additive 
gel electrolyte act as a greater electrolyte in DSSCs, which showed the higher PCE of 
5.8%. This SAA organic additive has electron-rich donor atoms combined in a struc-
ture such as N, O and S, and it stimulates the redox transfer of ions in gel electrolyte 
via complex formation. Therefore, TiO2 fermi level has less negative shift evidently 
proved to be improve the PCE of DSSCs device. Without additive GLN gel electrolyte 
attained PCE of 3.9% because of GLN gel electrolytes have a less conductivity and 

Figure 14. 
Charge transfer resistance of gel electrolytes without and with additives.

Electrolyte system Jsc

(mA cm−2)
Voc

(V)
Fill factor

(FF)
Efficiency

(η)

SAA/ I−/ I3
−/gelatin 14.1 790 0.52 5.8

TDA/ I−/ I3
−/gelatin 13.0 780 0.51 5.2

PDA/ I−/ I3
−/gelatin 12.4 770 0.51 4.9

DAP/ I−/I3
−/gelatin 11.3 765 0.51 4.4

DBC/I−/ I3
−/gelatin 11.0 760 0.51 4.3

I−/ I3
−/gelatin 10.1 752 0.51 3.9

Table 3. 
I-V results of gel electrolytes without and with additives for DSSCs device under 1 sun illumination (100 mWcm2).
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charge transfer process. After that, the addition of organic additives into the gel elec-
trolytes improves the PCE DSSCs device. The variation of structure and functional 
groups in organic additives improves the amorphous nature of gelatin polymer and 
the good diffusion pathway of I3

− ions in the gel nature.
The device stability of the gel electrolyte without and with additives was assigned 

for the stability test at room temperature and its stands for 6 days (Figure 15). The 
calculated efficiency by Voc, FF, Jsc and η (Figure 16).

4. Conclusion

In this study, good stability and high performance of DSSCs device due to 
 inexpensive incorporation of organic additives with rich lone pair N, O and S groups 
into gel electrolytes biopolymer gel which compared to without organic additive gel 
electrolyte. The organic additives (i.e., SAA, PDA, TDA, DBC and DAP) were linked 
in the surface of TiO2 that readily fermi level shifts in CB of TiO2 to a negative poten-
tial. The integration of S, O and N-containing organic additives into the gel electro-
lytes improves the ionic conductivity from 1.72 ×  10−5 S/cm−1 (GLN gel electrolyte) to 
2.93 ×  10−5 S/cm−1 (SAA gel electrolyte). An increase of the Cμ, Rct and τn in DSSCs, 
additives-based gel electrolyte, clearly explained the decrease in the recombination 
reaction between the TiO2/dye/electrolyte interface. Moreover, DFT study suggests 
that the anchoring groups in organic additives act as a high charge transfer process 
and their strong covalent bond and non-covalent bond on the TiO2 surface. SAA 
additive gel electrolyte attained PCE 5.8% and GLN gel electrolyte reached the PCE 
3.9%. This phenomenon proved the importance of N, S and O-containing additives 
in biopolymer gel electrolyte-based DSSCs performances. Thermal results prove 
the gelatin gel electrolytes have good stability in DSSC performances. The ionic 
conductivity is highly enhanced by the presence of carboxylic acid and amino linkage 
groups that offered a high interaction between the TiO2 surface and organic additives 

Figure 15. 
I-V curve of gel electrolytes without and with additives.
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when compared with GLN gel electrolyte (without additive). The structure and 
functional group variations in organic additives improve the amorphous nature of 
gelatin polymer and good diffusion pathway in the gel nature. Gelatin with additive 
gel electrolyte increases the amorphous nature and improves the ionic conductivity 
in DSSCs. The chemical capacitance is augmented after the addition of SAA additive 
combined with gelatin gel electrolyte, which decreases the recombination process 
for the production of good PCE. We introduced inexpensive organic additives with 
gelatin-biopolymer gel electrolytes, showing high PCE and better replacement of 
conventional liquid electrolytes in DSSCs applications.

Figure 16. 
Stability graph of gel electrolytes without and with additives.
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