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Abstract—The variability and intermittency of integrating 

large-scale wind generation pose a significant risk to the 

reliability and integrity of the electricity grid. Precise wind 

power forecasting is crucial for ensuring the reliability of wind 

power grid integration. This research presents a Wind Energy 

Forecasting (WEF) method that combines a Convolutional 

Neural Network with a Bidirectional Recurrent Neural Network 

(CNN-BiRNN). The Convolutional Neural Network (CNN) 

analyzes the spatial characteristics present in weather 

observations, extracting significant features. Meanwhile, the 

Bidirectional Recurrent Neural Network (BiRNN) manages the 

temporal relationships within the serial time-series information. 

By using this holistic strategy, the model can successfully 

represent the intrinsic temporal and spatial trends in wind 

energy production, leading to more precise and reliable 

forecasts. A refined ResNet150-based CNN architecture has 

been utilized to obtain profound latent characteristics that are 

highly representative and selective, resulting in enhanced 

accuracy. An assessment of the CNN-BiRNN model and the 

individual CNN and BiRNN models was conducted using 

weather data and a wind energy dataset from a wind farm. The 

study aimed to assess the performance of these models in multi-

step WEF. The findings demonstrate that the suggested CNN-

BiRNN has superior capability in extracting spatial and 

temporal features compared to the conventional structural 

model. The comparison indicates that the CNN-BiRNN model 

surpasses the performance of separate CNN and BiRNN models 

with reduced error at different time intervals, highlighting its 

potential to improve the accuracy of WPF.  

Keywords— Wind Energy Forecasting, Convolutional Neural 

Network, Bidirectional Recurrent Neural Network, ResNet150, 

Accuracy 

I. INTRODUCTION  

Concerns regarding the sustainability of renewable energy 
sources, like solar and wind power, are growing, and there 
have been notable shifts in the mix of energy sources used to 
generate electricity [1]–[2]. Globally, these resources are 
growing at the fastest rate per year, which indicates a rapid 
energy transition. As an illustration, the capacity of wind 
power globally increased from 178 GW in 2009 to 745 GW in 
2020. Concurrently, the solar power capacity increased from 
38 GW to 592 GW [3]. Because of the increased economic 
benefits of solar and wind power, further growth in their 
penetration is anticipated.  

The weather-dependent variability of these energy 
resources, however, poses a risk to power system operations' 
economic efficiency and dependability, which could result in 
large-scale social and financial losses [4]. Forecasting variable 
renewable energy (VRE) is the most basic and useful front-
end application among supply-side variability handling 
techniques. Its accuracy makes the VRE's grid integration safe 
and affordable [5]. It has been established that wind power's 
extremely unpredictable qualities make it less predictable than 
solar power. Furthermore, unlike solar generators, wind 
generators are typically installed as wind power plants as 
opposed to distributed generators. This geographic smoothing 
and aggregation contributes to the reduction of operating 
reserve requirements, which is especially advantageous for 
bulk power system operations. Thus, a number of studies have 
been carried out to look into ways to improve the WEF and 
the impact of aggregated wind power on the power system [6]. 

Three categories exist for WEF methods: CNN, RNN-
based method, physical method, and conventional statistical 
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method. In order to complement each other, a hybrid model 
combining more than two of the aforementioned methods has 
been studied [7]. The numerical weather prediction system 
(NWP), which represents the mathematically expressive 
model based on diverse geographical and meteorological data, 
is the foundation of the physical approach, which expands 
upon it. This approach has limitations for short-term 
forecasting because it is challenging to compile all the 
necessary geographical or meteorological data, even though it 
works well for medium-term forecasting periods longer than 
three hours [8]. 

II. LITERATURE SURVEY 

Decomposition-based hybrid WEF model by Jaseena and 
Kovoor (2021) uses deep bidirectional LSTM networks. The 
method used Empirical Mode Decomposition (EMD) to 
analyze wind speed time data and deep bidirectional LSTM 
networks to predict. The model accurately reproduces the 
complex patterns of wind speed fluctuations using spectral 
and temporal properties [10]. Deep bidirectional LSTM 
networks were trained using wind speed data. The model 
accurately predicts wind speeds, demonstrating its ability to 
identify temporal relationships and improve forecasts.  

Nguyen and Phan (2022) developed an hourly wind speed 
prediction method. They use EMD, CNN-Bi-LSTM, and GA 
optimization in a hybrid model [11]. The authors start by 
breaking down the wind speed time series into its intrinsic 
mode functions using Ensemble EMD. Prediction is then done 
with a CNN with Bi-LSTM architecture and GA optimization. 
The hybrid model is trained using wind speed data. The output 
numbers accurately predict wind speeds for the next hour. The 
benefits include better prediction, resilience to complex and 
unpredictable factors, and wind pattern adaptation. However, 
parameter adjustment and optimization computing complexity 
can be drawbacks. 

Garg and Krishnamurthi (2023) developed a CNN 
encoder-decoder LSTM model to predict sustainable wind 
power. CNNs extract and encode features, and then LSTM 
layers model sequences [12]. The model is designed to predict 
wind power output using historical data. You teach the CNN 
encoder-decoder LSTM model to learn from wind power 
measurements. The model's output values accurately predict 
wind power production, showing its ability to capture 
complex spatial and temporal relationships. Its ability to 
process sequential input and capture hierarchical 
characteristics is beneficial. However, large datasets and 
processing resources may be drawbacks. 

Anu Shalini and Sri Revathi (2022) studied renewable 
energy power production forecasting. CNN-based 
Bidirectional LSTM was used for deep learning. The 
suggested method uses a CNN to extract features and a 
BiLSTM network for sequential modeling [13]. The model is 
trained using renewable power production data. The output 
values accurately predict power production, demonstrating the 
model's ability to capture complex renewable energy 
generation patterns. Precision in predicting renewable energy 
generation makes it ideal for power system integration. 
However, a lot of annotated data and computing power may 
be needed. 

Paramasivan studied deep learning-based RNNs in 2021 
to improve wind energy forecasts. Many papers using RNNs 

for wind energy forecasting were reviewed [14]. Execution 
focused on condensing findings and methodology from 
examined investigations. The output values show how well 
RNNs capture temporal relationships, improving wind energy 
prediction. Integrating current data and pattern recognition in 
wind energy forecasts using RNNs is beneficial. The study's 
review-oriented design may limit implementation details, 
which can have drawbacks. 

Zhang and Wang (2023) developed a new wind speed 
prediction method. Multi-head attention-based probabilistic 
CNN-BiLSTM uses many methods to make accurate forecasts 
[15]. The method captures spatial and temporal wind speed 
relationships using multi-head attention mechanisms and a 
hybrid CNN-BiLSTM architecture. The model is trained 
using past wind speed data, considering probabilistic 
predictions. Probabilistic wind velocity forecasts reveal 
uncertainty. Benefits include better uncertainty management 
and prediction accuracy. However, computational complexity 
and attention mechanism calibration may be drawbacks. 

Using temporal and spatial feature extraction, Zhen et al. 
(2020) developed a hybrid DL model for wind power 
predictions [16]. Integrating a DL model that extracts 
temporal-spatial features improves wind power estimates. 
Wind power data is used to instruct the model. The model 
captures complex spatiotemporal patterns to predict wind 
power production accurately. Integrating temporal-spatial 
characteristics improves precision. Drawbacks may include 
model complexity and the need for large datasets. 

Ko et al. (2020) developed a deep concatenated residual 
network with biLSTM to predict wind power one hour ahead 
[17]. The technology captures short-term and long-term wind 
power data relationships using a deep concatenated residual 
network and BiLSTM layers. Wind power data is used to train 
the model during implementation. The output numbers 
accurately predict wind power for the next hour. Short-term 
wind power prediction is more precise, making the model 
suitable for real-time applications. However, computational 
complexity and parameter adjustment may be drawbacks. 

The knowledge acquired from these studies provides a 
foundation for further progress in creating precise and 
dependable models for WEF, which is essential for 
maximizing the integration of renewable energy into power 
systems. 

III. WIND ENERGY FORECASTING BASED ON THE INTEGRATION 

OF CNN AND BIDIRECTIONAL RNN 

The integration of CNN and BiRNN in the WEF technique 
(shown in Fig. 1) is a sophisticated approach that enhances the 
precision of predictions in the renewable energy sector. 
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Fig. 1. Framework for wind energy forecasting based on the integration of 

CNN and Bidirectional RNN 

Initially, data was collected, and pre-processing of the 
dataset was done. This novel approach utilizes CNN to extract 
intricate spatial features from meteorological data, 
encompassing wind speed, temperature, and pressure maps. 
The BiRNN models the temporal dependencies of wind 
patterns by incorporating information from both preceding 
and subsequent time intervals, leading to a holistic 
comprehension. The model can effectively comprehend the 
complex spatial and temporal patterns associated with wind 
energy generation by integrating these two neural network 
architectures. This technique showcases outstanding expertise 
in gathering intricate patterns within the data and also provides 
more accurate and robust predictions. It emphasizes the 
potential of combining spatial and temporal feature learning 
to improve WEF capabilities. 

A. Refined ResNet150-based CNN architecture 

A refined ResNet150-based CNN architecture has been 
utilized to obtain profound latent characteristics that are 
highly representative and selective, resulting in enhanced 
accuracy. 

 

Fig. 2. Refined ResNet150-based CNN architecture using Transfer Learning (TL) 

Fig. 2 depicts Refined ResNet150-based CNN architecture 
using Transfer Learning (TL). ResNet, short for Residual 
Network, is a CNN architecture that facilitates training neural 
networks with many layers. This is achieved by incorporating 
residual connections, which enable the network to learn 
residual functions instead of directly learning the desired 
underlying mapping. ResNet150 is an enhanced iteration of 
the initial ResNet model, featuring 150 layers. This enables 
the creation of more complex network structures and enhances 

overall performance. Inadequate data can impede the 
effectiveness of ML/DL models in WEF. Lack of adequate 
data can lead to the problems of overfitting or underfitting, 
which in turn diminishes the accuracy of the model. This study 
tackles the issue by employing the Refined ResNet150 
framework to extract spatial features using TL. The extracted 
features are anticipated to possess greater representativeness 
and discriminability, resulting in enhanced accuracy in the 
WEF. 
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The process consists of two distinct stages: offline training 
and online detection. During the offline stage, the raw training 
data produces tri-channel information. The three-channel 
information is subsequently employed to refine the pre-trained 
ResNet-150 model, which generates profound transfer 
features. The features are subsequently employed to 
categorize whether the monitoring goal has attained the state 
of failure. The framework of three-channel data remains 
consistent in both the offline and online phases. The profound 
transfer characteristics are subsequently generated by 
inputting this three-channel data into the deep transfer 
algorithm. The detections are obtained through the logistic 
regression technique, specifically the softmax classification. 
This is a comprehensive elucidation of every constituent of the 
procedure. 

B. The architecture of DL 

DL is an effective method for identifying potential 
correlations among disparate datasets. It systematically 
reveals latent attributes within the initial data and employs 
them for regression or clustering. The correlation between the 
depth of a neural network and its efficiency is crucial. The 
neural networks acquire increasingly complex and refined 
features through layering. Therefore, the higher the number of 
tiers in a network, the more efficient it becomes in 
categorizing and predicting. However, the authors found that 
the accuracy of identification may reach a maximum or 
decrease when the length of a system increases. This 
phenomenon is referred to as DL model degradation. It 
suggests that the process of training deep neural networks is 
challenging. The fundamental principle of the structure is that 
when a complex system is built by adding new layers to a 
simple design, the worst-case circumstance is that the extra 
layers do not gain any further functionality and duplicate the 
behavior of the outside system. This suggests that the newly 
introduced dimension replicates the old layer without any 
changes. Given the circumstances, the deep network is 
expected to perform at a minimum level equal to or better than 
the shallower system.  

The fully connected layer is described explicitly by 
Equation (1). 

𝐾𝑓𝑐 = 𝑓𝑊,𝑏
𝐶→(𝐾𝑐)

�̂� = 𝑠𝑜𝑓𝑡_max(𝐾𝑓𝑐)
                                           (1) 

where 𝐾𝑓𝑐 represents the outcome of the new fully 

interconnected layers and 𝐾𝑐 represents the result of the pre-
trained convolutional level.  

During the offline training stage, the parameters of the 
newly added layers are adjusted, while the parameters of the 
pre-trained convolutional layers are kept fixed. To achieve the 
objective of modeling updates, fine-tuning involves 
performing guided WEF. The outcome of the profound 

transfer system is represented by�̌�. The SoftMax algorithm 
utilizes logistic regression to determine the class of the 
incoming information. The SoftMax equation calculates the 
probability, denoted as 𝑝𝑥 , that the specimen belongs to a 
particular group. In Equation (2), the term e exp(𝑍𝑥)denotes 
the output of a particular neuron within the fully 
interconnected neural networks. The expression 
∑ exp(𝑍𝑦)
𝑁
𝑦=0  represents the sum of all neuronal responses 

in fully interconnected neuronal networks. 

𝑝𝑥 =
exp(𝑍𝑥)

∑ exp(𝑍𝑦)
𝑁
𝑦=0

                                                                  (2) 

During the training phase, the cross-entropy loss functions 
(LF) calculate the difference between the forecasting result 
and the actual detection of the wind energy. Equation (3) 
displays the LF. 

𝐿𝐹 =
1

𝑀
∑ −{𝑂𝑥 ∗ log(𝑝𝑥) + (1 − 𝑂𝑥) ∗ log(1 − 𝑂𝑥)}
𝑀
𝑥=0                           (3) 

In Equation (3), 𝑂𝑥is the labeling of the 𝑥𝑡ℎ specimen, 1 
is a positive class, and 0 is the negative class. 𝑝𝑥signifies the 

probability that the 𝑥𝑡ℎ sampling will be positive. 

In the offline stage, information from additional elements 
is used to build a three-channel model. Lastly, the study uses 
the three-channel data to refine the ResNet-150 model that 
was previously learned to get spatial transfer properties.

 

Fig. 3. The architecture of BiRNN 
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The architecture of BiRNN is shown in Fig. 3. The 
accuracy of a traditional RNN may be increased by 
bidirectional learning. The idea that the output is a component 
of the continuous correlation rather than the exclusive result 
of earlier inputs has led to the adoption of bidirectional 
learning. BiRNN trains its parameters in both forward and 
backward directions to comprehend the context. RNNs are 
trained only in the forward route; this training approach can 
capture characteristics or patterns in both directions. 
Compared to traditional RNN, BiRNN performed better and 
showed more sequential learning accuracy. 

The BiRNN architecture manages the temporal ties in the 
serial time-series data. This comprehensive approach enables 
the model to capture the inherent temporal and geographical 
patterns in wind energy output, producing more accurate and 
consistent predictions. Ultimately, the components train the 
detection algorithm based on SoftMax. The temporal deep 
features are extracted using the BiRNN method. Finally, WEF 
results are acquired by applying these comprehensive 
properties to the SoftMax classifier classification model. 

IV. RESULTS AND DISCUSSION 

This study introduces the wind energy database from 
ERCOT with the temperature dataset from Dresden [18]. 
Every database consists of hourly mean information, 
including just one feature and no additional factors. The 
values of each dataset undergo pre-processing to be scaled 
within the range of 0 to 1. Subsequently, every dataset is 
partitioned into training and testing subsets. The training set is 
used to adjust the specifications of the prediction models, 
while the test set assesses the efficacy of the chosen model. 

 

Fig. 4. Wind Power Forecasting output (x104 MW) results using CNN, 

BiRNN, and the proposed CNN-BiRNN along with original values 

Fig. 4 illustrates the WPF output (x104 MW) results using 
CNN, BiRNN, and the proposed CNN-BiRNN along with 
original values. The actual wind power outputs are used as the 
definitive measure for assessment. At time point 90, the 
observed output is 1.1 x104 MW, while the CNN-BiRNN 
model forecasts 1.05 x104 MW, the CNN model forecasts 1.3 
x104 MW, and the BiRNN model forecasts 1.01 x104 MW. 
The tendency persists for successive time intervals. The 
suggested CNN-BiRNN routinely exhibits precise forecasts, 
closely matching the real values. This indicates the efficacy of 
integrating CNN with BiRNN for wind power prediction. The 
comparison demonstrates that the CNN-BiRNN model 

surpasses the performance of separate CNN and BiRNN 
models at different time intervals, highlighting its potential to 
improve the accuracy of WPF. 

 

Fig. 5. Forecasting error (MW) of BiRNN, CNN, and the proposed CNN-

BiRNN for WPF 

Fig. 5 depicts the forecasting error (MW) of BiRNN, 
CNN, and the proposed CNN-BiRNN for WPF. The 
forecasting error is the difference between the projected and 
actual wind power outputs. At time point 90, the CNN-BiRNN 
model has an error of 0.05 MW, whereas the CNN model has 
an error of -0.2 MW, and the BiRNN model has an error of 
0.09 MW. The tendency persists for successive time intervals. 
The suggested CNN-BiRNN consistently maintains a low 
error, demonstrating its capacity for precise wind energy 
projections. The proposed CNN-BiRNN reduces errors and 
improves the accuracy of WEF compared to using separate 
CNN and BiRNN models. The presence of negative errors at 
some periods suggests a little underestimating. However, in 
general, the CNN-BiRNN model surpasses or equals the 
performance of the other models, emphasizing its 
effectiveness in WEF. 

V. CONCLUSION 

This study introduces a WEF technique integrating a 
Convolutional Neural Network with a Bidirectional Recurrent 
Neural Network (CNN-BiRNN). The CNN examines the 
spatial attributes of weather data, identifying notable 
elements. The BiRNN handles the temporal dependencies in 
the sequential time-series data. By implementing this 
comprehensive approach, the model effectively captures the 
inherent patterns in generating wind energy, including 
temporal and geographical aspects. As a result, the predictions 
generated are characterized by enhanced accuracy and 
dependability. A sophisticated ResNet150-based CNN 
architecture has been used to extract deep latent features that 
are both highly representative and selective, leading to 
improved accuracy. An evaluation was performed on the 
CNN-BiRNN model and the separate CNN and BiRNN 
models, utilizing meteorological data and a wind energy 
dataset obtained from a wind farm. The research sought to 
evaluate the efficacy of these models in WEF systems. The 
results indicate that the proposed CNN-BiRNN outperforms 
the traditional structural model in extracting spatial and 
temporal data. The comparison reveals that the CNN-BiRNN 
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model outperforms the standalone CNN and BiRNN models 
by achieving lower error rates at various intervals. This 
emphasizes the model's potential to enhance the accuracy of 
WPF. 
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