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Abstract: A mathematical model that comprehensively captures the real behavior of riverbed deformation, 

encompassing all pertinent effects, is developed. The underwater slope reformation process, with the 

generatrix aligned along the flow velocity in the model, is considered. A numerical model is introduced to 

calculate the flow involving a deformable bottom, and the model's validation is established through rigorous 

analysis of experimental findings. The research firmly confirms the suitability of the proposed mathematical 

and numerical model for describing deformations in uneven and unsteady river flows, including the 

movement of dredging slots and channel quarries. The model's minimal equation count and reliance on 

empirical constants demonstrate the model's efficiency. The model's predictions align strongly with 

experimental data, although optimal values of empirical coefficients vary slightly across different experiments. 

Hence, there is a call for further investigation to derive more universally applicable closure relationships for 

the model. The importance of validating the model with reliable field data and its potential extension to 

accommodate hydraulically diverse soils is emphasized. Such an extension is feasible due to the concentration 

transfer equation, enabling independent calculations for particle fractions of varying sizes as long as the total 

particle concentration in the stream remains within reasonable limits. This dedicated research contributes 

significantly to understanding riverbed deformations and advancing accurate modeling and management of 

riverine environments. 

Keywords: riverbed deformation; numerical modeling; channel; flow; structure; two-dimensional 

equation; hydraulically heterogeneous soils 

 

1. Introduction 

In most cases, river channels' position and depth change over time through channel 

deformations. Therefore, a forecast of channel deformations is required for high-quality design of 

relevant structures and work performance. In addition, most rivers are regulated due to the 

construction of reservoirs for energy and agricultural needs. There are also a large number of water 

intake structures that significantly affect the flow dynamics. All these rivers' special flow aspects 

significantly change the natural course of the riverbed process, and a forecast of rivers' bed change is 

required. Therefore, studying and developing the theory of channel processes and the dynamics of 

channel flows has always attracted the attention of researchers [1,2]. 

However, despite the abundant work devoted to forecasting channel deformations, its solution 

is still far from practical completion due to the complex and multifactorial nature of riverbed 

processes in space and time. Particularly great difficulties arise when designing various river 

structures in rivers, the bed of which, due to large bottom slopes, high flow velocities, and easy 

erosion of bottom sediments (represented by fine sandy soft soils), is subject to extremely complex 

and intense deformations. An example of such a river in Uzbekistan is the Amu Darya. 

The behavior of channel processes in easily eroded soils is very complex. Due to such complexity 

and multifactorial causes that determine channel processes, as well as due to the lack of a rigorous 

theoretical solution to the problems of river hydraulics and the dynamics of channel flows, 
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researchers resort to the use of methods of physical and numerical modeling of channel processes 

[3,4]. Both of these methods complement each other, and as a result, it is possible to obtain more 

reliable solutions to the problem posed by the deformation of the channel in a specific section. 

Numerical or physical modeling is used to solve the problem of channel processes, which can 

give a specific forecast of channel deformations in the area of the structure. Despite such long 

practical experience, achieving an acceptable balance between the requirements of water 

transportation systems and the structures themselves, especially in the conditions of meandering 

channels composed of easily eroded soils, is a complex and pressing engineering task [5,6]. 

A typical research object of the channel processes is the Amu Darya River, which is easily eroded 

in the middle reaches. Numerical and physical are the most important directions in the channel 

process research. However, big problems with similar and distinctive features arise in both research 

directions. 

The general problem is finding the basic physical laws and creating a mathematical model 

(closed system of equations) to describe the process accurately. In this finding, the mathematical 

model can be both stochastic and deterministic. After drawing up such a model, the problems of both 

modeling methods become completely different. 

Physical modeling is based on finding the conditions for connecting the model and nature based 

on analyzing the system of equations under study [7–9]. This analysis is related to: 

− the use of a similarity transformation that would show that a process on a smaller scale (on a 

model) is equivalent to a process on a larger scale (in reality); 

− finding modeling criteria based on it; 

− establishing areas of self-similarity according to various criteria if they actually exist.  

Ultimately, the rules for converting from model to actual are obtained. Very often, it turns out 

that a very large model scale or expensive materials is required, which is associated with large 

material costs. 

Currently, hydraulics is experiencing a period of rapid development of numerical models. The 

numerical model represents a way of calculating quantities necessary for practice, described by the 

above system of equations. A numerical model can be either an exact or an approximate solution to 

a system of equations. In more or less complex cases, exact solutions are impossible, and therefore, it 

is necessary to use approximate numerical models. The most developed numerical models are based 

on discretizing temporal and spatial variables. 

Moreover, the main disadvantage of such models is the unknown degree of approximation of 

the solution to the original equations. It is almost impossible to strictly prove a discrete problem's 

convergence to the original solution. It is necessary to demonstrate such convergence empirically by 

comparison with test problems. However, compared to physical modeling, numerical modeling 

requires significantly less time and labor, allowing for more multivariate studies and considering a 

greater number of factors influencing the process. Therefore, numerical modeling of physical 

processes and numerical modeling of channel processes play an increasingly important role.  

For modeling channel flows, approaches based on the numerical solution of two-dimensional 

Saint-Venant equations have shown high efficiency and sufficient accuracy. The derivation of these 

equations, numerical integration algorithms, and examples of calculations are given, for example, in 

[5–8]. However, the Saint-Venant model is open-ended for deformable channels and requires 

addition, for example, with an equation or system of equations to find variables in the time and space 

of bottom marks. 

Previous studies [10,14] have revealed that the process of deformation, including the flattening 

of an underwater slope with a rectilinear generatrix directed along the flow velocity, can be 

effectively described by a one-dimensional diffusion equation governing the bottom elevation within 

a watercourse: 
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- p is the soil porosity coefficient, 

- Zb (t,y) is the bottom elevation, 

- t is the signifies time, 

- y is the coordinate across the slope;( 

- D is the diffusion coefficient characterizing the specific transverse sediment flow rate. 

Furthermore, the studies [15] have established the relationship for the diffusion coefficient D. 

Analytical solutions to the initial boundary value problem associated with equation (1) were also 

obtained, specifically for the hypothetical case of deformation of an underwater slope with an initial 

profile in the form of a vertical step in a channel of unlimited width. 

The authors in the work[16] facilitated the derivation of analytical solutions for a slot of finite 

width. Additionally, the model's performance was rigorously verified against a substantial dataset 

of field observations, demonstrating its effectiveness in solving practical problems: 
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where: 

− U,V is the components of the depth-average water velocity vector along the x and y axes, 

respectively, 

− h (x,y,t) is the flow depth 

− S (x,y,t)* is the saturation turbidity, denoting the vertical average volume concentration of 

sediment in an equivalent uniform flow. 

Equation (2) has been instrumental in predicting channel transformations by assuming that 

saturation turbidity, or equilibrium sediment concentration, primarily depends on local flow 

characteristics and is related to them like uniform flow conditions. Using equation (2) in conjunction 

with the two-dimensional Saint-Venant equations has yielded satisfactory results in predicting 

channel transformations for various scenarios [17,18]. 

Equation (2) presents limitations for describing planned deformations in channels that feature 

bottom sections with relatively steep slopes. Such slopes are dredging slots, quarries, or steep banks 

at bends. In a straight channel with an underwater slope, where the generatrix aligns with the velocity 

vector (and both the velocity vector and flow depth remain constant along the longitudinal 

coordinate x), equation (2) implies that Zb=const. Consequently, equation (2) does not account for a 

well-recognized phenomenon: the alteration of an underwater slope with a generatrix parallel to the 

flow velocity vector. The non-accounting arises from the assumption in equation (2) of the collinearity 

of water velocity and solid phase flow vectors, which is not true in all cases. 

Several researchers have attempted to enhance equation (2) by introducing terms that enable it 

to account for the Several researchers have attempted to enhance equation (2) by introducing terms 

that enable it to account for the effect of noncollinearity of water velocity and solid phase flow vectors. 

In works [19,20], the theoretical justification for incorporating diffusion terms into equation (2) was 

established. The diffusion terms' incorporating led to the derivation of an expression for the diffusion 

coefficient of the bottom mark, represented as a spherical tensor, with proportionality to the 

longitudinal specific sediment flow rate in the direction of the velocity vector: 
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, and 𝛼 is proportionality factor. 

An alternative model was introduced in [21,22], which diverges notably from the prior one. The 

key distinction lies in formulating the diffusion term exclusively in the direction orthogonal to the 

flow velocity vector. Additionally, an extra term is incorporated to consider the streamline 

curvature's impact on bottom elevations' alterations. The diffusion coefficient is proportionate not to 

the flow velocity but to the value of the non-shearing flow velocity. Applying this alternative model 

has yielded remarkable results in predicting channel reformations. The previously mentioned 
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deformation models [21,22] all operate assuming that sediment particle concentration in the flow 

closely approximates equilibrium conditions. It has been established in [10] that the specific sediment 

flow from the bottom into the flow thickness is proportionate to the value (
*SS − ). 

The current study aims to amalgamate the strengths of various previously mentioned models 

and propose a mathematical model for sediment transport in turbulent and dynamic river flows. It 

is recommended to conduct numerical simulations of river flows characterized by deformable 

bottoms, as proposed in [8], to employ a mathematical model governed by a system of two-

dimensional Saint-Venant equations [17] incorporating partial derivatives and closing relations. 

The authors in works [25-27] determined the dependence and influence of the channel shape on 

the ratio of the friction coefficient and the Reynolds number for laminar flow in an open channel. In 

the articles [28-30], the researchers conducted an experimental analysis of the rotation of carbon fibers 

flowing in the discharge channel at an angle of 90°. The velocity and velocity gradients inside the 

channel are calculated using computer hydrodynamics simulation. It was found that the fibers are 

affected by a relatively high local shear rate and that they propagate together with the flow, which 

indicates a parallel alignment in the flow direction while simultaneously demonstrating a 90° rotation 

in the bend angle. In studies [31-33], the authors performed numerical simulations of turbulent flow 

in a channel with superhydrophobic surfaces. The contribution of turbulence to the volumetric 

average velocity was found to remain almost unchanged in the absence of sliding due to the negative 

coherent component of the Reynolds shear stress. In articles [34-37], the thermal characteristics of a 

compressible laminar flow of natural convection induced at a high-temperature difference in a 

vertical channel with an open end were studied by optimizing the distance between the channel 

plates using numerical modeling. As a result, the authors presented a correlation of the optimal 

aspect ratio with the Rayleigh number, which maximizes heat transfer inside the channel. In [38-43], 

the authors investigate stable, incompressible, laminar flow in a channel bounded by rough and/or 

permeable walls. The study found a closed solution of the Navier–Stokes equations for flow in a 

channel with conditions at each boundary linking sliding velocities with shear stress and pressure 

gradient along the flow. 

Simulations of the hydrodynamic and dynamic changes in the relief of the riverbed were carried 

out, and the models for accurate calculation of changes in the layer level and the area of deposition 

and erosion were proposed [44-47]. In the work [48-50], a hydraulic experiment was conducted to 

study the hydraulic phenomena of the dam, comparing hydraulic surges and flow characteristics. It 

was found that although the sluice gates generated hydraulic surges similar to those in stationary 

dams, their supercritical flow increased downstream, which ultimately lengthened the overall 

hydraulic surge. 

Based on the above analysis, the numerical research method is identified as the main research 

method for this work. According to the purpose of the study, the main objectives of the study are 

outlined in the following interpretation: 

- selection of the basic flow equation; 

- conducting numerical studies of the reformation of inclined walls of a channel wall with a 

moving bottom; 

- conducting experimental studies 

- comparison of the obtained results with the results of experimental studies. 

2. Methods 

2.1. Analytical studies 

The analytical approach employed in this work involves: 

− Choice of Flow Equation: The selection of the equation governing flow movement in the river 

bed is represented by a system of two-phase hydrodynamic equations of Saint-Venant. These 

equations are complemented by including equations related to sediment balance, transport, and 

the Bagnold equation. 
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− Numerical and Experimental Studies: Numerical and experimental studies are conducted under 

conditions of a moving bottom by utilizing the chosen equations. 

− Comparison of Results: The obtained results from both numerical and experimental studies are 

thoroughly compared and analyzed. 

This analytical approach aimed to comprehensively understand and model the dynamics of 

riverbed processes and deformations. 

2.1. Experimental studies 

The laboratory experiments were conducted to validate the model. The experiments focused on 

a slope's erosion by a current, where the current's velocity vector aligns with the slope's generatrix. 

These experiments were carried out in the Hydraulics Laboratory of Moscow State University of Civil 

Engineering, Moscow, Russia. The experimental setup and procedures were consistent with those 

previously documented in references [10 – 13]. 

The laboratory experiments were conducted within a channel featuring variable slope 

dimensions, with the following primary specifications: a length of 18 meters, a width of 2 meters, and 

a wall height of 0.8 meters. The channel's capacity allowed for a flow rate of up to 4 cubic meters per 

second, and the slope ranged from 0 to 0.1. Water flow measurements were facilitated through a 

triangular weir positioned at the channel's outlet. A specialized pocket was integrated at the end of 

the flume's working section to collect sediment to accommodate the experiments. During the 

experiments, a swinging shield was also employed to regulate the channel's flow level. The 

longitudinal slope maintained during the experiments was 0.0027. 

Figure 1 illustrates the eroded model. Table 1 shows the sand's granulometric composition. 

Specifically, the sand had a mean diameter of 0.24 millimeters.  

Table 1. Fractional composition of sand in the model. 

Fraction diameter (mm) 1-0.5 0.5-0.25 0.25-0.1 <0.1 

Content (%) 0.2 31.9 67.7 0.2 

The cross-sectional shape of the model closely resembled half the cross-section of a trapezoidal 

channel with a slope coefficient represented by m=2. Before commencing water flow, a thorough 

horizontal survey of the bottom was performed. Water was incrementally introduced into the flume, 

simultaneously from the upper and lower tails, to ensure minimal bottom disturbances before the 

start of each experiment. Throughout the experiments, measurements were taken at defined intervals 

to record the water's bottom surface and free surface in fixed sections. These measurements were 

then averaged to provide comprehensive data for analysis. 
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Figure 1. General view of the washed-out model. 

3. Results 

3.1. Mathematical model 

As recommended in [8], a mathematical model based on a system of two-dimensional Saint-

Venant equations [17] incorporating partial derivatives and closing relations to perform numerical 

calculations of river flows characterized by deformable bottoms is employed. This mathematical 

model serves as a foundational framework for understanding and predicting the complex dynamics 

of river flows: 
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where 𝑡 is the time; ℎ is the flow depth; U and V are the components of the flow velocity along the 

X and Y axis, respectively; ห𝑈ሬሬ⃗ ห = √𝑈ଶ + 𝑉ଶ; 𝑆 is the volumetric concentration of sediment particles 

in the flow; 𝑆∗ is the equilibrium volume concentration of particles (saturation concentration), taken 

according to the modified Bagnold formula; 𝐾  is the intensity coefficient of vertical sediment 

exchange between the bottom and the stream; 𝑝 is soil porosity (the ratio of the volume of pores to 
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the volume of the entire soil with pores); 𝜌௦ ,𝜌 is the densities of soil and water, respectively; φ is the 

angle of internal friction of the soil; 𝑊 is the hydraulic soil coarseness; 𝑈∗ is the dynamic speed; ห𝑈ሬሬ⃗ ห, 𝑈ே is the module of the average vertical flow velocity and the non-shear velocity, respectively; 𝜆 is 

the coefficient of hydraulic friction, calculated using the Manning formula; 𝑛  is the roughness 

coefficient. 

For determining the non-shear velocity in the calculations, the formula provided by 

representatives of channel hydraulics [23,24] is utilized, which, with consideration of standard 

coefficient values, is expressed in two formally equivalent forms: 

[ ]HysN Cgd
d

h
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where 𝐶௬ு is soil adhesion in t/m2; 𝑑ହ is the average diameter of soil particles, 𝑑ଽ is the 90% of soil 

particles' diameter. 

In the calculations of the diffusion coefficient (equation 7), three variants of formulas for  𝑆෩  are 

employed: 

a) Based on the total equilibrium concentration of transportable and suspended sediments: 

*
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b) Derived from bottom equilibrium concentration: 
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c) Utilizing bottom concentration "without square" 
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The initial conditions are defined for the initial bottom surface 𝑍(𝑥,𝑦, 0), the corresponding 

instantaneous fields of the velocity 𝑈ሬሬ⃗ (𝑥,𝑦, 0), the depth h(x,y,0), and the concentration S (x,y,0). 

The boundary conditions for (9-13) are as follows: 

− On solid boundaries, the condition of no flow is specified. 

− For liquid boundaries, flow rates or water levels are typically specified. 

− Water flows into the computational domain through the boundaries of the computational 

domain, and the precipitation concentration is set at these boundaries. 

− Complex boundary conditions were also sometimes used. The complex boundary conditions 

could link costs with levels and non-reflective boundary conditions. 

The solution for equations (4) and (5) concerning sediment concentration and bottom marks was 

carried out using the finite volume method on mixed triangular-quadrangular grids combined with 

the Saint-Venant equations. 

The developed numerical scheme aligns with the scheme for the continuity equation of the liquid 

phase, which helps prevent the occurrence of so-called dipoles as sources and sinks of mass. It utilizes 

a directed difference type scheme to eliminate unphysical oscillations in the bottom topography, 

maintains the transportability property, and implements a difference analog of mass conservation for 

the solid phase. 

Equations (4) and (5) represent a minimal approach for modeling processes of bottom 

deformation in uneven and non-stationary river flows. Disregarding equation (4) implies an 

assumption that the concentration in the flow is close to equilibrium and does not permit the 

specification of boundary conditions for concentrations. Eliminating terms from equation (5) that 
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describe the diffusion of bottom marks makes it impossible to account for the processes of 

transformation (flattening) of underwater slopes. Moreover, to describe three distinct physical 

processes (uplift-sedimentation, longitudinal sediment transport, transverse diffusion of bottom 

marks), at least three empirical coefficients are required. In this model, the empirical coefficients are 

α, β, α1. The choice of the closing relations for model (6)-(13) remains an open question and 

necessitates further research. 

Calculations for identical conditions were conducted, assuming a value of 0.5 for the test 

problems. The type of closing relations (7)-(13) and parameters were varied during the calculation 

process. 

3.2. Numerical model 

The calculations were conducted using (4) and (5). A rectangular grid consisting of 1800 cells 

measuring 0.1 m × 0.2 m was constructed for a tray with 18.0 m × 2.0 m dimensions. At the entrance 

boundary corresponding to the first row of cells, it was assumed that the bottom was not eroded, 

which matched the entrance section of the tray reinforced with a cement crust in the laboratory 

experiment. 

 

Figure 2. Bottom marks and rectangular grid for a numerical model of an eroded slope. 

In the first step, the water flow rate at the inlet boundary was set to Q = 112 l/s, and flow was set 

as clarified (S = 0). The parameters of the numerical model, α_1 and β, were selected during the 

calculation process to achieve the best agreement in the average diameter of the flume between the 

calculated profile of the eroded slope and the experimental data. The results of the calculations are 

presented in Figures 3- 5. 
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Figure 3. Flattening the slope when calculating the diffusion coefficient (6) from the bottom 

concentration (12) and non-shear velocity according to formula (9): β =40, 𝛼ଵ = 0.25. 

 

Figure 4. Slope flattening when calculating the diffusion coefficient based on bottom concentration 

(12) and non-shear velocity using formula (10): β=15, 𝛼ଵ = 0.25. 
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Figure 5. Slope leveling when calculating the diffusion coefficient based on bottom concentration (12) 

and non-shear velocity using formula (10): 𝛽 = 30, 𝛼ଵ = 0.25 

Figures (3-5) illustrate the different scenarios and parameters used in the calculations and their 

impact on the flattening or leveling of the slope. The results demonstrate the importance of selecting 

appropriate parameters for achieving the best agreement with experimental data. 

The interaction between the flow and the moving bottom in the zone of a quarry, which typically 

occupies only part of the river's width, has been studied in detail. In real conditions, the interaction 

of the flow and the moving bottom in the quarry area is spatial, making the physical picture of the 

processes more complex and not fully describable in a one-dimensional setting. 

The results of model studies conducted at the State Hydrological Institute, Moscow, Russia, in a 

hydraulic tray (2.0 m × 50.0 m) with a moving bottom were utilized to test the models. The bottom 

slope in the tray was 0.00125. At the flume inlet, the flow rate was set to Q = 40 l/s. During the 

establishment of the flow, a stable ridge relief was formed, which acquired a three-dimensional 

structure and scaly character. The average water depth increased from 6.65 cm to 8.86 cm, and the 

average flow speed decreased from 30.1 cm/s to 22.5 cm/s. 

After achieving a quasi-uniform regime in the hydraulic flume, a riverbed quarry with a width 

of 0.7 m, which occupied 35% of the flume's width, was mined. The quarry was located in the axial 

part of the tray, with a depth of about 14 cm initially. The thickness of the sand layer at the bottom of 

the quarry was 3.0 cm. The sediment supply at the entrance boundary was 1.82 l/h (S = 0.02 kg/m3), 

with an average diameter of the initial soil being 0.32 mm. 

The experiment in the work [8] described the process of bottom transformation, with 

background erosion deformations developing in areas above and below the quarry. Above the 

quarry, erosion began in the axial part of the flow, while below the quarry, the erosion process 

occurred more intensively. The highest bottom marks were observed in the edge areas near the upper 

ledge, which moved downstream. 

For the numerical simulation of these experimental studies, a rectangular grid of 5250 cells was 

constructed, and the roughness coefficient was set to 0.027 to match steady-state depths and fluid 

velocities to the experimental data without a quarry. The calculations were then carried out in the 

presence of a quarry. The diffusion coefficient was determined from the bottom concentration (12) 

and the non-shear velocity using formula (9) with β = 15 and α_1 = 1.0. The comparison of results 

between calculations and experiments showed almost complete qualitative and quantitative 

agreement. 
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This extensive analysis and comparison demonstrate the model's ability to accurately represent 

and predict the behavior of the flow and bottom interactions in complex real-world scenarios. 

4. Conclusions 

This study has developed a comprehensive mathematical model to depict riverbed deformation 

behavior accurately. The conclusions of the study can be summarized as follows: 

1. The proposed mathematical model (section 3.1) and numerical model (section 3.2) for bottom 

deformations in uneven and unsteady river flows are suitable for calculating deformable 

channels, making it applicable to scenarios such as the easily eroded bed of the Amu Darya River. 

The models are characterized by their simplicity, with a minimum number of equations and 

empirical constants. 

2. A two-dimensional mathematical and numerical models of a deformable channel were 

developed and successfully verified. 

3. Numerical studies were conducted to investigate channel deformation, providing insights into 

the nature and intensity of these deformations. Comparison with experimental data 

demonstrated good agreement in the experimental results. However, it's worth noting that the 

optimal values of empirical coefficients varied between different experiments, highlighting the 

need for further work to establish more universal closing relations for the model.  

4. Verifying the model using field data is crucial to enhance the model's applicability and reliability. 

Additionally, the extension of the model to account for hydraulically heterogeneous soils is a 

promising avenue, as the concentration transfer equation (equation 4) allows for independent 

calculations of different particle fractions, assuming the total concentration of particles in the flow 

is not excessively high. 
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